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Abstract 

Background: Worldwide, forests are an important carbon sink and thus are key to mitigate the effects of climate 
change. Mountain moist evergreen forests in Mozambique are threatened by agricultural expansion, uncontrolled 
logging, and firewood collection, thus compromising their role in carbon sequestration. There is lack of local tools for 
above-ground biomass (AGB) estimation of mountain moist evergreen forest, hence carbon emissions from defor-
estation and forest degradation are not adequately known. This study aimed to develop biomass allometric equations 
(BAE) and biomass expansion factor (BEF) for the estimation of total above-ground carbon stock in mountain moist 
evergreen forest.

Methods: The destructive method was used, whereby 39 trees were felled and measured for diameter at breast 
height (DBH), total height and the commercial height. We determined the wood basic density, the total dry weight 
and merchantable timber volume by Smalian’s formula. Six biomass allometric models were fitted using non-linear 
least square regression. The BEF was determined based on the relationship between bole stem dry weight and total 
dry weight of the tree. To estimate the mean AGB of the forest, a forest inventory was conducted using 27 temporary 
square plots. The applicability of Marzoli’s volume equation was compared with Smalian’s volume equation in order to 
check whether Marzoli’s volume from national forest inventory can be used to predict AGB using BEF.

Results: The best model was the power model with only DBH as predictor variable, which provided an estimated 
mean AGB of 291 ± 141 Mg ha−1 (mean ± 95% confidence level). The mean wood basic density of sampled trees was 
0.715 ± 0.182 g cm−3. The average BEF was of 2.05 ± 0.15 and the estimated mean AGB of 387 ± 126 Mg ha−1. The 
BAE from miombo woodland within the vicinity of the study area underestimates the AGB for all sampled trees. Chave 
et al.’s pantropical equation of moist forest did not fit to the Moribane Forest Reserve, while Brown’s equation of moist 
forest had a good fit to the Moribane Forest Reserve, having generated 1.2% of bias, very close to that generated by 
the selected model of this study. BEF showed to be reliable when combined with stand mean volume from Marzoli’s 
National Forestry Inventory equation.

Conclusion: The BAE and the BEF function developed in this study can be used to estimate the AGB of the moun-
tain moist evergreen forests at Moribane Forest Reserve in Mozambique. However, the use of the biomass allometric 
model should be preferable when DBH information is available.
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Introduction
Forests generally, and moist tropical forests specifically, 
have huge amounts of carbon in their biomass [1]. This 
means that tropical forest vegetation, which accounts for 
about 50% of the world’s forest, store not less than 46% of 
the world’s living terrestrial carbon pool, and the tropical 
soils store about 11.55% of the world’s soil carbon pool 
[2, 3]. Mountain moist evergreen forests cover a small 
part (less than 3%) of the total forest area in Mozam-
bique (400,680  km2) [4], and typical examples can be 
found in the Chimanimani outskirts, where Moribane 
Forest Reserve (MFR) is located [4, 5]. In fact, the MFR 
is among the largest moist evergreen forests in Mozam-
bique [4]. The flora of these forests is still poorly known, 
but includes some of the locally threatened or endemic 
plant species [6].

In spite of still containing high species richness and 
diversity of plants and animals [6, 7], the MFR is at risk 
of deforestation and forest degradation (D&FD) [8]. 
Therefore, disturbance and land use can thus have large 
impacts on carbon emission into the atmosphere [1]. 
A case study carried in the Manica province, which 
included the MFR area, has observed annual biomass and 
carbon losses of 3.1% (2007–2010), attributable equally 
to D&FD [8]. The D&FD has resulted in negative impacts 
on biodiversity conservation and climate change [6, 9].

Solutions to reverse or slow down D&FD in MFR 
include improving forest carbon storage, protecting bio-
diversity, and sustaining livelihoods of forest-dependent 
people. This includes the implementation of emerging 
carbon credit market mechanisms such as Reducing 
Emissions from Deforestation and Forest Degradation 
(REDD+) [10]. Mountain moist evergreen forests have a 
great potential for conservation within the REDD+ con-
text because they store large amounts of carbon, they 
have high biodiversity level and socio-ecological value [7, 
8].

The Paris Agreement encourages developing countries 
to contribute to climate change mitigation by reducing 
emissions from deforestation, forest degradation, con-
serving carbon stocks, managing forest sustainably and 
enhancing forest carbon stocks [11]. With the REDD+ 
centered on results-based mechanism, where carbon is 
the most important result indicator, the need to establish 
appropriate allometric models and biomass expansion 
factor (BEF) has grown. Although information on bio-
mass allometric equations (BAE) has been developed for 
African forests, little has been done for moist evergreen 
forests, particularly those in Mozambique [12].

So, for countries that need to implement the REDD+ 
mechanism, it is important to develop biomass local 
models and parameters per forests types to estimate 
accurately the greenhouse gas emissions from D&FD 

[13]. Appropriate BAE and BEF and reliable forest inven-
tory data on biomass is essential to accurately quantify, 
monitor and report the impacts or benefits of REDD+ 
activities on climate change mitigation [13, 14]. BEF has 
been particularly useful because need aggregated data 
(mostly mean stand volume) from forest inventories in 
order to estimate average above-ground tree biomass. 
Therefore, it becomes very useful when stand volume of 
forest inventory is available but not only the individual 
trees as required by allometric model [14].

However, BAE and BEF functions previously devel-
oped in Mozambique were developed for forest types 
other than moist evergreen forest, e.g. lowland miombo 
woodland [15–17], mangrove forests [18] and mecrusse 
woodlands [19–21]. Moreover, the degree of reliability 
of the existing general allometric models and BEF func-
tions and those suggested for moist in tropical zones [2, 
22–24] must be checked if applied in a site different than 
that where they were originally developed [25].

In this study, we develop a pioneer BAE and a BEF 
for estimating total (stem, branches and foliage) above-
ground tree biomass (AGB) of mountain moist evergreen 
forest in MFR, in central Mozambique. BEF function is 
intended to estimate total AGB using the wood volume 
and wood basic density [14, 22], which are provided by 
the national forest inventory [4].

Materials and methods
Study area
This study was carried out at Moribane Forest Reserve 
(MFR), located in the district of Sussundenga in central 
Mozambique (S 19° 45′, 33° 22′ E) (Fig. 1). The MFR has a 
total area of about 53 km2 and was proclaimed as a con-
servation area in 1957 [26]. Since 2000, the MFR is part 
of the Chimanimani Transfrontier Conservation Area, 
which involves Mozambique and Zimbabwe. Extensive 
forest perturbance was caused in some parts of the for-
est by a devastating fire which occurred in 1992, subse-
quent to a very severe drought [6]. Sussundenga district 
had a population of 168 thousand in 2017 [27]. Artisanal 
mining in the highlands, deforestation for slash-and-
burn agriculture, illegal hunting and logging are the main 
threats of biodiversity loss in MFR [28]. Ryan et  al. [8] 
stated that within the MFR, biomass was lost at a rate of 
2.8 ± 1.9% per year, with stocks changing from 19.4 ± 0.9 
TgC in 2007 to 17.6 ± 0.9 TgC in 2010. Small-scale agri-
culture was the direct cause of 46 ± 17% of the total bio-
mass loss, followed in magnitude by construction and 
miscellaneous activities (24 ± 11%), charcoal production 
(18 ± 9%), logging (9 ± 5%) and commercial agriculture 
(3 ± 2%) [8].

The moist evergreen forest is the main forest type of 
MFR, which is dominated by evergreen tree species and 
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deciduous tree species, such as Newtonia buchananii 
(Baker) Gilbert & Boutique (Leguminosae), Pteleopsis 
myrtifolia (M. A. Lawson) Engl. & Diels (Combretaceae), 
Millettia stuhlmannii Taub. (Leguminosae), Albizia gum-
mifera (J. F. Gmel.) C. A. Sm. (Leguminosae), Khaya 
anthotheca (Welw.) C. DC., among others [4, 6, 26, 29, 
30]. The climate is classified as tropical, modified by alti-
tude, according to Köppen climate classification [31]. The 
altitude range is 400–550 m a.s.l., the mean annual tem-
perature range is 17–24  °C [30]. The mean annual rain-
fall range is 1200–1400 mm [29], and the soils range from 
sandy loam to sandy clay [32].

Forest inventory and assessment of total above‑ground 
tree biomass
A conventional forest inventory was carried on 27 square 
non-permanent inventory plots, 50 × 50 m (0.25 ha). At 

each sampling plot, diameter at breast height (DBH at 
1.3  m from the ground), commercial tree height (HC), 
and total tree height (TH) were measured on all trees 
and shrubs with DBH ≥ 5  cm. All trees were identified 
at species level in the field by a skilled botanist. Total 
(stem, branches and foliage) AGB was estimated using 
the destructive method. Field sampling resulted in a total 
of 39 trees (Table  1), which were used to construct the 
BAE for the MFR. The trees for destructive sampling 
were selected randomly in the landscape considering the 
need to represent size classes of DBH from 5 to 60 cm. 
However, the national legislation does not allow any log-
ging activities inside conservation areas in Mozambique. 
With this limitation, the sample trees were cut in the 
buffer zone of MFR, where human disturbance is high. 
Hence, some trees sized between 40 and 50 cm were not 
sampled.

Fig. 1 Geographical location of the MFR in the central province of Manica, Mozambique. The green dot (right) indicates the location of the main 
camping site of the reserve
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The DBH of the selected trees was measured using a 
caliper, whereas the commercial and total tree height/
length were measured using a conventional measuring 
tape after the tree has been fallen. Each sampled tree was 
divided into three components (i) bole stem as the mer-
chantable section, (ii) branches with minimum diameter 
of 3 cm, and (iii) twigs and leaves. The total fresh weight 
of each component was determined immediately in the 
field, using a mechanical weighing scale (max. 200  kg, 
precision 100  g). For each component, sub-samples 
weighing 200–3000 g were taken and their fresh weight 
determined in the field using a digital weighing scale 
(max. 3 kg, precision 0.5 g).

In the field, the stem of each sampled tree was meas-
ured according to the Smalian’s method for accurate stem 
volume estimation [33]. The stem of each individual tree 
was subdivided into billets, and the top end and the lower 
end of each section was measured for diameter using a 
caliper. The bole was divided in the following sections: 
0.1, 0.4, 0.7, 1, 1.3 and 2 m length and then followed by 
intervals of 1 m until reaching the starting point of can-
opy of tree. Table 1 shows the descriptive statistics of the 
sampled trees.

Laboratory measurements
The dry weight of all sub-samples (belonging to bole 
stem, branches and foliage) was determined in the labo-
ratory after drying at 75 °C in an oven to constant weight. 
The dry weight of each sub-sample was recorded in the 
laboratory using a digital weighing scale (max. 3  kg, 
precision 0.5  g). Dry to fresh weight ratio of the sub-
samples of each tree component was used to determine 
the dry weight of each tree component. The dry weight 
of tree components was added together to give the tree 
total above-ground dry weight (bole stem, branches, and 
foliage).

After determining the dry weight of each sub-sample 
of the bole stems, the subsamples were subjected to an 
additional treatment, in order to determine wood basic 
density (WBD). The determination of WBD was adapted 
from the procedure described in Malimbwi et  al. [34] 
and Munishi and Shear [35]. From each stem sub-sam-
ple, four square specimens of 3 × 3  cm (with the height 
varying from 3 to 4  cm depending on the thickness of 
the stem disk sample) were extracted. Each specimen 
was submerged in water for a week in order to attain its 
fresh volume. Each specimen was then submerged in a 
graduated 1-l container with the precision of 0.1 cm3 for 
the estimation of the subsample volume. The WBD of 
each specimen was obtained by dividing its dry mass (in 
grams) by its corresponding wet volume (in cubic cen-
timeters) [22, 36]. Finally, the WBD of the stem (g cm−3), 
which is shown in Table 1, was calculated averaging the 
sum of the ratio dry weight  (sdwi; g) and the volume  (svi; 
 cm−3) of each of the four specimens was extracted per 
sub-sample, using Eq. 1.

Data analysis
Construction of biomass allometric equation and height–
diameter regression models
Six alternative non-linear regression functions were 
selected as candidate BAE and tested in this study 
(Table  2). The adequacy of DBH alone (model 4), DBH 
in combination with total height (TH) (model 1 and 6), 
DBH in combination with WBD (model 3) and the com-
bination between DBH, TH and WBD (model 2 and 5) as 
predicting variables of total dry weight (tDW) of stand-
ing forest (live trees) were selected as candidate BAE 
and tested in this study. We also tested the relationship 
between tree TH and DBH. The diameter–height mod-
els were selected from Ngomanda et al. [12] (model 7 is 
a power function and model 8 is Mitscherlisch function) 
and Mugasha et al. [37] (model 9 and 10), and were fitted 
using non-linear regression.

Model selection and evaluation criteria
The BAE and the height–diameter relationship model 
which showed the lowest value of residual standard 
error (RSE) and Akaike’s information criterion (AIC, 
Eq.  2) was chosen [18, 37, 38, 44]. Both BAE and 
height–diameter models were develop in R software, 
version 3.3.2 [40], using the non-linear least square 
regression approach in the ‘nlstools’ package [39]. For 
further analysis, we computed two other parameters, 

(1)WBD =
1

4

i=1
∑

4

sdwi

svi

Table 1 Descriptive statistics of  the  trees sampled used 
to  construct the  BAE and  to  determine the  biomass 
expansion factor at the MFR in Mozambique

SE is standard error of the mean

Variables and parameters Description

Mean SE Range

DBH (cm) 21.46 12.84 5.50–57.00

Total tree height (m) 12.26 4.43 4.72–23.80

Commercial tree height (m) 5.14 2.77 1.40–10.60

Smalian’s stem volume  (m3) 0.27 0.36 0.0072–1.58

Wood basic density (g cm−3) 0.71 0.16 0.46–0.91

Total dry weight (kg  tree−1) 523.12 843.42 3.96–3539.06
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as suggested by Kachamba et al. [44], i.e. mean predic-
tion error (MPE, Eq. 3), relative mean prediction error 
(RMPE, Eq.  4) for all alternative models tested in this 
study.

where AIC (unite less) is Akaike’s information criterion, 
MPE is mean prediction error (kg  tree−1), RMPE is rela-
tive mean prediction error (%), tDWest,i and tDWobs,i are 
estimated and observed total dry weight of individually 
weighed tree i, respectively, Y  is average of observed total 
dry weight (kg  tree−1), n is total number of sampled trees, 
and p is number of parameters in the tested model. All 

(2)

AIC = nLog

(

n
∑

i=1

(

tDWest,i − tDWobs,i

)2

n

)

+ 2p

(3)MPE =

(

tDWest,i − tDWobs,i

)

n

(4)RMPE =

n
∑

i=1

MPE

Ȳ
× 100

model goodness-of-fit testing were performed in R soft-
ware, version 3.5.1 [40].

Comparison with existing regression models
Finally, we compared the performance of prediction of 
our best BAE developed in this study with the BAE shown 
in Table  3, which were selected from the literature. We 
tested three moist forest models of Pan-tropical [22, 41, 
42], one rainforest model from Tanzania [43], three low-
land miombo woodland, of which one from Tanzania [37] 
and another model from Mozambique [17]. The compari-
son was made based on MPE and RMPE [17, 44]. The best 
model was considered to be the one that yielded the lowest 
MPE and RMPE value close to our selected biomass model.

Biomass expansion factor
The BEF was calculated as the average ratio between total 
dry weight and total stem weight of all harvested trees 
using Eq. 5 [2, 14, 22, 23].

where BEF (unit less) is biomass expansion factor, tDW,i 
(kg  tree−1) is total (bole stem, branches and foliage) dry 

(5)BEF =
1

n
×

n
∑

i=1

tDWi

tSWi

Table 2 Alternative models tested for predicting total above-ground tree biomass (model 1–6) and for predicting total 
height (model 7–10) in mountain moist evergreen forest of Moribane forest reserve in Mozambique

tDW is total (stem, branches and foliage) dry weight of individual tree (kg  tree−1)

DBH is diameter at breast height (cm)

TH is total height (m)

WBD is wood basic density (g cm−3)

b0, b1, b2 and b3 are the regression parameters

Model Expression Source

Biomass allometric models

1 tDW = b0 × DBHb1 × THb2 Magalhães and Seifert [20]

2 tWD = b0 × DBHb1 × THb2 ×WDb3 Ngomanda et al. [12], 
Chave et al. [42], 
Mugasha et al. [37]

3 tDW = b0 × DBHb1 ×WDb2 Mate et al. [15]

4 tDW = b0 × (DBH)b1 Guedes et al. [17]

5 tDW = b0 × (DBH2 × TH ×WD)b2 Ngomanda et al. [12], 
Chave et al. [42], 
Mugasha et al. [37]

6 tDW = b0 ×
(

DBH2 × THb1
)

Diameter–height models

7 TH = 1.3+ b0 ×
[

exp(−b1 × exp (−b2 × DBH))
]

Mugasha et al. [37]

8 TH = b0 − b1 × exp(−b2 × DBH) Ngomanda et al. [12]

9 TH = 1.3+
[

DBH2/b0 + b1 × DBH + b2 × DBH2
]

Mugasha et al. [37]

10 TH = b0 × DBHb1 Ngomanda et al. [12]
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weight of each individually sampled tree, tSW,i (kg  tree−1) 
is total dry weight of the bole stem alone and of each 
individually sampled tree, and n is the total number of 
sampled trees.

Stem volume
The stem volume was calculated by using two proce-
dures: (i) the destructive method, i.e. the volume calcu-
lated per section using the Smalian’s formula (Eq.  6) as 
used by Henry et  al. [45] in a similar study in a moist 
evergreen forest in Ghana; and (ii) considering the gen-
eral factor form (Eq.  7), as suggested by Marzoli [4], 
which is the conventional procedure used to calculate 
stem volume (merchantable volume) in national forest 
inventories of native forests in Mozambique. We seek to 
understand the implication of using the national volume 
equation from Marzoli [4] against that generated in this 
study by the sectional method. The Marzoli [4]’s equation 
was used to predict mean volume per hectare from for-
est inventory data which was then used for prediction of 
AGB using BEF.

where Vc  (m3) is stem volume (otherwise merchantable 
volume), DBH (cm) is the diameter at breast height of 
all sampled trees, Db (cm) is diameter of the lower cross-
section, Du (cm) is that of the upper cross-section; L (m) 
is length of stem; hc (m) is tree commercial height, and fc 
(0.8) is form factor for merchantable stem volume.

(6)Vc =

n
∑

i=1

(

D2
u + D2

b

8
× Li

)

(7)Vc =
π × DBH2

4
× hc × fc

Since the equation suggested by Marzoli [4] takes a 
constant form factor (fc) for commercial height of trees, 
regardless of forest type and tree species differences, 
in this study we compared the stem volume calculated 
from the two procedures, under the specific conditions 
of the moist forest of MFR and using the Wilcoxon’s test 
(α = 0.05). By using Marzoli [4]’s equation, we aimed at 
evaluating the potential to use the BEF combined with 
the volume tables of the national forest inventory for 
quick estimates of AGB.

Estimations of total above‑ground tree biomass
The mean AGB was determined using two interchange-
able procedures (Eqs. 8 and 9) and by averaging the bio-
mass of the 27 plots sampled in this study. At plot level, 
biomass was calculated based on Eq. 8, which was devel-
oped in this study (Table  3 and Fig.  2), and on Eq.  9, 
which uses the BEF, mean stand stem volume and WBD. 
The differences between the two methods were tested 
using paired samples, two-tailed Wilcoxon test as the 
AGB from selected model, BEF and Brown’s model do 
not followed Gaussian distribution.

where AGB,j (Mg ha−1) is above-ground biomass of each 
sampled plot j; tDWi (kg  tree−1) is total dry weight (bole 
stem, branches and foliage) of each individually weighed 
tree at each sampled plot; Area,j (hectares) is the area of 
each sampled plot (0.25 ha); n is number of trees found 
in each plot; 0.001 is a conversion factor from dry weight 

(8)AGB,j =

(

0.001

Areaj

)

x

n
∑

i=1

(tDW ,i)

(9)AGB,j =

(

0.001

Areaj

)

x V ,j xWBD x BEF

Table 3 Models with  diameter at  breast height (DBH), total height (TH) and  wood basic density (WBD) as  independent 
variables selected from  the  literature and  used to  compare with  the  predictive accuracy of  the  BAE developed in  this 
study

NA not available

ID no. Biomass allometric equation Source DBH range (cm) Sampled trees Forest type Country

1 tDW = exp(− 2.134 + 2.530 × ln(DBH)) Brown [22] 5–148 170 Moist forest Pan-tropical

2 tDW = exp(− 2.289 + 2.649 × ln (DBH)) 
− 0.021 × ln(DBH2))*

Pearson et al. [41] 5–148 170 Moist forest Pan-tropical

3 tDW = 0.1754 × DBH2.3238 Guedes et al. [17] 5–53 155 Miombo woodland Mozambique

4 tDW = 0.1014 * (WBD * DBH2 * TH)0.9510 Mugasha et al. [37] 5–100 60 Miombo woodland Tanzania

5 tDW = 0.0673 * (WBD * DBH2 * TH)0.976 Chave et al. [42] NA 4004 Moist forest Pan-tropical

6 tDW = 0.1027 * DBH2.4798 Masota et al. [43] 5–100 60 Rainforest Tanzania
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(tDWi; in kilograms) to  AGBj; (Mg  ha−1); Vj,  (m3  ha−1) 
is the stand volume according to Marzoli [4]; WBD 
(Mg  m−3) is average wood basic density; and BEF (unit 
less) is biomass expansion factor.

Results
Adjusted biomass allometric equation
Parameter estimates and model performance criteria are 
presented in Table  4. The model 1 with both DBH and 
TH and model 2 with DBH, TH and WBD, are those with 

Fig. 2 a Relationship between total above-ground tree dry weight (kg) and diameter at breast height (DBH), according to the power model 
tDW = 0.0613 × DBH2.7133 fitted in this study; b relationship between estimated and observed total dry weight tested for the for the 39 trees used to 
fit the power model above (Y = 0.986X + 9.429, adjusted R-squared 99%, RMSE 75 kg  tree−1, t = 61.1 and P < 0.0001, and degrees of freedom 39)

Table 4 Parameters estimated and statistics of the six candidate regression functions tested to predict total dry weight 
(tDW) of the moist evergreen forest in MFR in Mozambique

TH is total height, RSE is residual standard error, AIC is Akaike’s information criterion, b0 and b1 are the regression coefficients
a  Equation that fitted better to the data, based on lowest RSE and AIC values
b  Equation selected for further analysis

*** significant at α = 0.001,  ** significant at α = 0.01, * significant at α = 0.05, ns not statistically significant at α = 0.05

Parameter Alternative biomass allometric models

Model  1ab Model  2b Model 3 Model  4bc Model 5 Model 6

AIC 436 438 453 454 533 540

RSE (kg  tree−1) 61 62 75 77 213 233

MPE (kg  tree−1) − 4.7 − 4.9 − 5.1 − 4.3 − 17 − 21.4

RMPE (%) − 1.2 − 1.2 − 1.3 − 1.1 − 4.3 − 5.4

b0 0.0912*** 0.0969*** 0.0865** 0.0613*** 0.0941ns 0.0441ns

95% conf. inter. of  b0 (0.0603 to 0.1359) (0.0572 to 0.1597) (0.0469 to 0.1533) (0.0378 to 0.0963) (0.0281 to 0.2716) (0.0109 to 0.1483)

b1 2.8131*** − 0.2612*** 2.6416*** 2.7133*** 0.9608*** 1.0112***

95% conf. inter. of  b1 (2.7135 to 2.9166) (− 0.3827 to − 0.1398) (2.5070 to 2.7857) (2.5983 to 2.8358) (0.8599 to 1.0750) (0.8978 to 1.1385)

b2 − 0.2698*** 2.7945*** 0.3057ns

95% conf. inter. of  b2 (− 0.3816 to − 0.1583) (2.6585 to 2.9391) (− 0.0512 to 0.6786)

b3 0.0596ns

95% conf. inter. of  b3 (− 0.2468 to 0.3748)
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lower AIC value amongst all fitted models, with 436 and 
438 respectively (Table  4). The same models performed 
better in RSE value with 61 and 62 kg  tree−1 for model 1 
and 2, respectively. However, based on MPE and RMPE, 
model 4 was the best performing with only DBH, but all 
models generated RMPE but were not statistically sig-
nificant (t test, P > 0.05). Model 4 had AIC value (454) 
and RSE (77) almost the same as model 3 (AIC = 453, 
RSE = 75) with DBH and TH as independent variables. 
All models had negative RMPE values, which means that 
they are overestimating the tDW. Models 5 and 6 are 
the ones with the highest values of all computed statis-
tics of goodness of fit (AIC, RSE and RMPE). WBD coef-
ficients in model 3 and 2 were not significantly different 
from zero (t test, P > 0.05, Table 4). Adding TH and WBD 
as a predictor variables to a model with DBH did not 
improve the performance of the models. Thus, based on 
AIC, models 1 or 2 were the best than model 4, but given 
that MPE and RMPE were slightly lower for model 4, this 
can be shortlisted as candidate best-fitted model (with 
MPE = − 4.3 kg  tree−1 and RMPE = − 1.1%).

The model 1, 2 and 4 were selected as the best fits. 
However the model 4 with only DBH is a candidate for 
AGB estimation in this study because its variables is in 
agreement with our data from forest inventory, and it 
adequately describes the relationship between tDW 
against DBH (Fig. 2a). The diagnostic of the assumption 
of linearity between estimated and observed dry weight 
showed a satisfactory degree of statistical credibility to 

justify its use (Fig. 2b). So, the slope of the regression line 
was significantly different from zero (t test, P < 0.0001), 
which justifies the use of the BAE herein proposed for 
AGB estimation in the moist evergreen forest of MFR. 
The residual distribution of each model is presented in 
Fig. 3, which suggests that model 1, 2, 3 and 4 are all inac-
curate but are precise as the scatter dots slightly shifted 
from zero line, while model 5 and 6 are inaccurate and 
not precise, as shown in Table 4 and Fig. 3.

Comparison with existing biomass allometric equations
The BAE found in the literature (Table  3) and tested 
in this study predicted tDW of sample trees with bias 
ranged from − 1.2 to 55.9% (Table  5 and Fig.  4). The 
equation from Brown [22] gave good estimates of AGB at 

Fig. 3 Relative residuals in the prediction of total aboveground biomass versus DBH for 39 trees in MFR

Table 5 Predictive accuracy of  the  DBH-based model 
developed in  this study against  the  models selected 
from the literature, as compared with observed tDW 

Biomass allometric equation MAE (kg  tree−1) RMPE (%)

This study (model 4) − 4.2 − 1.1

Brown et al. [22] − 4.9 − 1.2

Pearson et al. [41] − 56.2 − 14.1

Guedes et al. [17] 110.2 27.7

Mugasha et al. [37] 64.8 16.3

Chave et al. [42] 54.2 13.6

Masota et al. [43] 105.5 26.5
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MFR (RMPE = − 1.2%). All BAE developed for miombo 
woodlands underestimated tDW with large difference, 
and high bias were found to Guedes et al. [17] with 27.7%. 
Mugasha et  al. [37] from miombo woodland underesti-
mated tDW of moist forest of MFR with 16.6% bias. Pan-
tropical models of Pearson et  al. [41] and Chave et  al. 
[42] had almost the same performance in terms of bias of 
estimation of tDW with − 14.1% and 13.6%, respectively. 
However, Chave et  al.’s model underestimate the tDW, 
while Pearson et  al. [41]’s model overestimate tDW of 
moist evergreen forest of MFR, although the bias was not 
statistically significant (t test, P > 0.05). However, Fig.  3 
indicates that Pearson’s model is well fitted to the sample 
data as showing the same trend with Brown’s trend line 
below, beside selected model of this study (model 4). All 

miombo woodland models are extremely far from trend 
line of this study. Masota et al. [43]’s trend line is slightly 
beside all trend line of miombo woodland models (Fig. 4). 
Thus, based on the results of Table 5 and Fig. 3, Pan-trop-
ical Brown [22]’s model is well fitted to our sample data, 
and miombo woodland models are not adequate to use in 
the moist evergreen forest of MFR.

Diameter–height models developed
The results of height–diameter models performance 
is presented in Table  6. The height–diameter models 
suggested that the TH has high correlation with DBH 
(r = 0.88, P < 0.001), which indicates that more than 80% 
of variability in TH is explained by DBH (Adj.  R2 = 84%, 
Table  6). The height–diameter model 7 had the low-
est AIC and RSE and the power height–diameter model 
10 had higher AIC and RSE value amongst all mod-
els (Table  6). Model 8 had the lowest MAE and RMPE 
amongst all tested models, making it the best-fitted 
model. The estimates of parameters of height–diam-
eter model 8 (Mitscherlisch model) were  b0 = 22.4  m 
(± standard error: 2.8  m) for the asymptotic height, 
 b1 = 20.8  m (± 2.1  m) for difference between asymp-
totic and minimum height, and  b2 = 0.039  cm−1 
(± 0.012  cm−1) for the shape parameter and had the 
same AIC value (161) with height–diameter model 9. The 
asymptotic height reported by model 8 can also be shown 
in Fig. 5a, which reached the asymptotic height of 20 m 
(very close to 22.4 m from selected model), and the DBH 
reached 45  cm. However, Fig.  5b is showing that tDW 
is still increasing as a result of tree growth in diameter. 
Figure  5a is suggesting that our sampled data covered 
all range of total tree height of moist forest of MFR. All 
diameter–height models had good performance based on 
residuals distribution showed in the Fig. 6.

Fig. 4 Graphical visualization of the predictive accuracy of the 
allometric model developed in this study against those selected from 
the literature, as compared with observed dry weight

Table 6 Parameter estimated of height–diameter relationship with Mitscherlisch model as the best-fitted

*** significant at α = 0.001,  ** significant at α = 0.01, * significant at α = 0.05, ns not statistically significant at α = 0.05

Parameters Diameter–height models tested

Model 7 Model 8 Model 9 Model 10

AIC 160 161 161 163

RSE (kg  tree−1) 0.84 0.84 0.83 0.82

Adj.  R2 1.79 1.8 1.81 1.87

MPE (kg  tree−1) 3.17E−04 1.17E−09 1.50E−03 − 0.03

RMPE (%) 2.72E−03 1.00E−08 0.01 − 0.26

b0 19.1887*** 22.4381*** 0.4833ns 2.4988***

95% conf. inter. of  b0 (16.3862 to 23.6319) (18.4177 to 32.4790) (− 3.8488 to 6.0111) (1.8953 to 3.2535)

b1 2.0685*** 20.7766*** 1.0296*** 0.5346***

95% conf. inter. of  b1 (1.6784 to 2.6690) (17.2706 to 29.0343) (0.4104 to 1.5866) (0.4519 to 0.6192)

b2 0.0690*** 0.0383** 0.0343***

95% conf. inter. of  b2 (0.0453 to 0.1011) (0.0179 to 0.0649) (0.0211 to 0.0495)
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Biomass expansion factor determined
The average BEF established for the moist forest of MFR 
was 2.05 ± 0.15 (mean ± standard error), and the general 

WBD suggested for all species of the studied forest was 
0.715 ± 0.018  g  cm−3. The stem volume, as depicted in 
Fig. 7, did not differ significantly than the one estimated 
by the Smalian’s formula (paired sample, two-tailed, 
Wilcoxon test, P > 0.05). Therefore, in the following 
analyses, this study uses the merchantable volume esti-
mated using Marzoli [4]’s equation to harmonize with 
the general procedures currently used to estimate stem 
volume in national and sub national forest inventory 
reports in Mozambique. The mean merchantable vol-
ume estimated from Marzoli [4]’s equation was about 
244.84 ± 79.63 m3 ha−1 (mean ± 95% of confidence level).

Estimations of above‑ground biomass
Total AGB of the mountain moist evergreen forest of 
MFR, calculated using the BAE fitted in this study, aver-
aged 290.73 ± 140.80  Mg  ha−1 (mean ± 95% of confi-
dence level), and the one calculated by the BEF averaged 
386.77 ± 125.79  Mg  ha−1. The BEF method generated 
significantly higher AGB than biomass model (Wilcoxon 
test, two-tailed, P < 0.0001). The AGB estimated using 
Brown’s model is somehow providing additional evidence 
that Brown’s model is still applicable to the MFR, and 
estimated about 247.67 ± 104.83 Mg ha−1 of AGB, which 
was not significantly different with the AGB estimated by 
the selected biomass model of this study (Wilcoxon test, 
two-tailed, P > 0.05).
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Discussion
Biomass allometric equation
The BAE was developed for mountain moist ever-
green forest in MFR as a tool of biomass estimation and 
hence, carbon stocks and emissions in Mozambique. 
The selected BAE (model 4) was consistent with sev-
eral authors that fitted the same power model with only 
DBH as a predictor variable [10, 15, 22, 37, 44, 46, 47]. 
The selected model does not include the tree height as a 
predictor variable, although some studies indicated that 
including tree height as predictor can improve the per-
formance of model [38, 48, 49]. However, our results 
showed that the model with both DBH and TH (model 
1 and 6) did not improve significantly its performance in 
comparison with model 4 with only DBH.

The most important predictor of volume or AGB is 
usually DBH. Depending on the desired precision and 
availability of additional predictors, a measurement of 
height, WBD and an higher diameter can also be included 
if they significantly reduce the volume prediction error 
[33]. All tested models indicated that using DBH, TH and 
WBD with four model parameters had good performance 
just based on AIC. Adding TH and WBD as a predictor 
variable to a model with DBH did not improve the per-
formance of the models. This can be seen in Fig. 8, which 

shows that model 2 with DBH, TH and WBD as predic-
tors overlapped to model 4 with only DBH, both models 

Fig. 7 a Relationship between Smalian’s volume and Marzoli [4]’s volume (Y = − 0.0453 + 1.304X (Y = 1.304 − 0.0453, R-squared 96%, RSE 
0.091 m−3, P < 0.0001, and degrees of freedom 37), and (b, c) descriptive statistics and mean comparison between Smalian’s volume and 
Marzoli [4]’s volume generated from sampled trees of MFR. The volume estimated using Smalian’s equation and Marzoli’s equation did not differ 
significantly between each other (paired samples, two-tailed, Wilcoxon test, P > 0.05)

Fig. 8 Comparison between model with only DBH as predictor 
variable and model with DBH, TH and WBD as predictor variables. The 
blue line of selected model (model 4 with DBH as predictor variable) 
overlap with red line (model 1 with DBH and TH as predictor variables) 
and with yellow line (model 2 with DBH, TH and WBD as predictor 
variables)
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generate tDW which falls into the same confidence inter-
val of 95%.

According to Ebuy et al. [50], a model which depends 
on DBH only is more appropriate when dealing with for-
est inventory data. The models (1–6) fitted in this study 
are commonly used and fitted by researchers [22, 37, 
44, 46, 47], however, we selected the model with DBH 
rather than model 2 with DBH, TH and WBD as both 
models had the same performance. According to Backer 
et al. [51], WBD is an important predictor of stand-level 
AGB, meanwhile, Overman et al. [52], in their study, rec-
ommend using the model with DBH only even with the 
lower goodness of fit relative to the other models fitted 
with DBH and WBD as predictor variables. This argu-
ment has been supported by Ebuy et al. [50], who stated 
that WBD becomes useful when extensive database 
exists. In this case, WBD can be used with model 6 to 
predict AGB of moist evergreen forest of MFR. However, 
it does not significantly bring any significant added value 
in accuracy to estimate AGB of the mountain moist ever-
green forest, when compared to the single variable model 
(model 4) selected as the best model that deal with our 
forest inventory data. Yet, model 2 instead of DBH and 
WBD has also TH as predictor, and TH is very difficult 
to assess in closed canopies of MFR. Moreover, the con-
ventional data collection in forest inventory in Mozam-
bique usually estimates, rather than measures, total tree 
heights. Tree heights in many cases are not recorded in 
the closed forest such as mountain moist evergreen forest 
of MFR where the access to canopy is difficult [53].

Where total height is particularly needed for other 
purposes than estimation of AGB, the diameter–height 
model 8 (Table 6) developed in this study for TH estima-
tion can be used. For instance, Chave et al. [38] have used 
tree height model to estimate AGB in pan-tropical moist 
forest. However, Feldpausch et  al. [54] stressed that the 
integration of tree height into BAE underestimates car-
bon storage by 13%.

Model comparison with existing models
Pan-tropical models from Pearson et  al. [41], including 
the allometric model developed by Guedes et al. [17] for 
a miombo woodland of Mozambique, were compared to 
our selected model (model 4) which showed differences 
between two sites. The other pan-tropical model that is 
mostly used, developed by Chave et  al. [42], was com-
pared in this study and it had bias of 13%, suggesting dif-
ferent climatic conditions from the region where it was 
developed. The relative mean prediction error (RMPE) of 
Brown [22]’s model of moist tropical forest showed that 
it can be applicable to predicting AGB in our study area 
despite not having included tree species from Africa. 
All models of miombo woodlands [17, 37] and moist 

forest [43–43] were not applicable to estimate AGB at the 
mountain moist evergreen forest in Mozambique.

While Brown [22]’s model underestimates somehow 
the dry weight of trees larger than 35  cm, it generates 
estimation with the relative bias of 1.2% (P < 0.05) close 
to those generated by the best-fitted model of this study 
with the relative bias of 1.1% (P > 0.05). On the other 
hand, Pearson’s model estimated lower AGB with a rela-
tive bias of 26.60% (P < 0.01). Differences between BAE 
could also result from regional differences in diameter–
height allometry [55]. The tree allometry could be the key 
source of the differences found, as mountain moist ever-
green forest are typically tall trees that may grow much 
more than 20 m, while lowland miombo is dominated by 
shorter trees for the same diameter, which justifies lower 
dry weight for trees in these woodlands. Eventually, the 
allometry of the trees in the Brown’s sample may have 
included trees with similar allometry to the trees of our 
study area, although Brown’s model consistently pre-
dicted lower AGB than our selected model. Gibbs et  al. 
[13] argued that the effort required to develop species or 
site-specific BAE would not typically improve accuracy in 
AGB estimations. Contrary to the results of Gibbs et al. 
[13], our results on existing model performance is in part 
in agreement with what was found by Ngomanda et  al. 
[12], who stated that the pan-tropical equations currently 
do not correctly capture the variability of biomass allom-
etry at the global scale. This can be seen with tested pan-
tropical models (Pearson et  al. [41]’s model and Chave 
et al. [42]’s model, Table 5 and Fig. 4).

Estimation of the biomass expansion factor
The average WBD found in this study can be comparable 
with those found in lowland tropical rain forest in Costa 
Rica (range from 0.27 to 0.74 g cm−3) [36]. Muller-Lan-
dau et al. [36] indicate that for biomass calculations, site 
average WBD values should ideally be weighted by wood 
volume. The values of BEF found in this study were not 
statistically different from those obtained by Machoco 
[16], for lowland miombo woodlands of the Central 
Mozambique, with values ranging from 1.20 to 5.09 and 
averaging 2.03 ± 0.14. We would expect BEF from moun-
tain moist evergreen forests to be lower than that of 
lowland Miombo woodlands. However, the lack of differ-
ences can be due to the data sources. Machoco [16] used 
average WBD obtained from the literature while in this 
study we used direct measurements through destructive 
sampling.

The BEF obtained in this study was much smaller com-
pared to the moist central African forest reported by 
Ngomanda et  al. [12] with 1.55 (range: 1.04 and 5.59), 
obtained by Segura and Kaninnen [23] in tropical humid 
forest of Costa Rica (mean 1.60 ± 0.20 ranging from 1.4 
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to 1.9), and reported by Henry et al. [45] in Ghana (mean 
1.51, range: 1.13 to 2.20) or by Djomo et al. [48] in south-
east Cameroon (mean 1.22, range: 1.02 to 2.02). This is 
probably because of differences in biomass allocation 
among different tree components, in diameter–height 
tree allometry and the crown architecture in different 
regions [12, 55]. The BEF estimate at MFR was lower than 
the value of 3.4 reported by the IPCC for tropical forest 
stands, but it was consistent with that found by Brown 
and Lugo [2] with an average range from 1.1 to 2.5, 
obtained from the forests of Africa, America, and Asia. 
Brown [56] states that tropical forests tend to have higher 
BEF for a given volume and tree size reflecting the large 
size of the tree crowns when compared to those of tem-
perate forests. Brown et al. [24] estimated different BEF 
for primary, secondary and non-productive rainforest 
of Sri Lanka, and presented average values around 2.02, 
2.26 and 4.48, respectively. According to those values, the 
BEF found in this study is within primary to secondary 
forest, perhaps because of high level of human distur-
bance which makes the forest in MFR more of a transi-
tion mountain moist evergreen forest with typically large 
crowns than in an undisturbed forest.

Estimation of above‑ground biomass
The models of above-ground tree biomass (AGB) in this 
study were developed using data with DBH range from 
5 to 57  cm. However, according to the forest inventory 

data, the maximum DBH of the trees recorded in the 
study area was 179  cm. Thus, including individual trees 
with bigger size than 57  cm would be necessary in the 
future to ensure the representativeness of individual’s 
trees in the ecosystem. The study was carried out in a 
conservation area where national legislation does not 
allow logging activities. With this limitation, the sample 
trees were cut in the buffer zone of MFR, where human 
disturbance is high. Consequently, there was lack of large 
size trees (DBH > 40 cm), and this was also recorded dur-
ing the forest inventory inside the protected area.

The fitted models should be used with caution with 
large trees (DBH > 57 cm) because they can overestimate 
the AGB. In this sense, a comparison of AGB was made 
between the model of this study and Brown’s for moun-
tain moist evergreen forest, however, there is no signifi-
cant difference between AGB estimates from the two 
models (Fig. 9). This indicates that the BAE of this study 
estimates AGB as expected for moist evergreen forest, 
regardless of the size of the trees of fit. It should be noted 
that both models generate over-estimate total above 
ground tree dry weight for larger trees (DBH > 100 cm), 
as it can be seen in Fig. 9, where all plots with trees larger 
than 100 cm became an outlier, trees with DBH > 100 cm 
accounting for 39% of the AGB, 18 trees with DBH above 
100 cm, 33 trees with DBH ranging from 60 to 100 cm, 
2634 trees with DBH < 60 cm, and 2685 trees were meas-
ured in inventory forest.

Fig. 9 Above-ground biomass estimated by selected biomass allometric model and BEF of this study as well as Pan-tropical model of Brown [22]
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The main purpose of Marzoli’s volume equation appli-
cation is to explore the possibility of using the volumes 
table from the national forest inventory generated by 
Marzoli [4] so that they are used to convert AGB through 
the BEF. Figure  7 shows that the Smalian’s volume was 
not different with Marzoli’s volume of sampled trees 
(paired sample, two-tailed, Wilcoxon test, P > 0.05). Thus, 
the volumes table of Marzoli [4] can be converted to AGB 
of the forest of the study area using the BEF developed in 
this study, as shown in Fig. 9 below. Here, there is enough 
evidence that the BEF overestimates the AGB of the study 
area and BAE becomes more accurate than BEF.

The mean values of AGB obtained in this study for 
model 4, BEF and Brown [22]’s model had high variability 
among plots, as seen for large confidence intervals. Many 
factors can explain the variability of AGB [heterogeneity 
of landscape (mature stand forest and secondary forest), 
soil fertility, wood basic density, high diameter and other 
factor] [51, 54, 55]. In general, the AGB estimated from 
selected model 1 (290.73  Mg  ha−1) and from the devel-
oped BEF (386.77  Mg  ha−1) of this study indicated that 
the mountain moist evergreen forest stores up to four 
times more carbon than miombo woodlands of southern 
Africa lowland, and in agreement with Desanker et  al. 
[57], who state that the AGB in dry miombo woodland 
is usually low, and is about 55 Mg ha−1 (ranging between 
21 and 84 Mg ha−1), while for wet miombo woodland it is 
about 90 Mg ha−1, ranging between 44 and 144 Mg ha−1.

The mean AGB estimated with BEF overestimates the 
AGB of the study area, in part, because of the overesti-
mation observed with Marzoli’s volume. Moreover, the 
AGB from BEF is within the range reported by Mania-
tis and Mollicone [58] in three forest types in the Congo 
Basin forest (AGB ranging from 312 to 333  Mg  ha−1). 
Munishi and Shear [35] reported an AGB of about 
1055 ± 35  Mg  ha−1 and 790 ± 20  Mg  ha−1, for the ever-
green mountain undisturbed forests of Usambaras sand 
Ulugurus Forest Reserves (highlands, MAP ~ 2900–
4000  mm and lowlands with MAP ~ 1200–3100  mm) 
respectively, in Tanzania. These values are higher than 
those found in this study, which could be related to the 
higher level of human disturbance in MFR. According to 
Ryan et al. [8], human activities such as agriculture, char-
coal production, and timber collection are responsible for 
about 46 and 56% of total biomass loss in Sussundenga 
District, where MFR is located.

Conclusions
The main objective of this study was to develop a BAE 
and BEF for AGB estimation in mountain moist ever-
green forest of MFR in Mozambique as a step forward for 
REDD+. The power model with only DBH was selected 

as the best fit for the whole tree dry weight (tDW) of 
mountain moist evergreen forest of MFR. This model 
presented a combination of lower RMSE, although 
slightly high AIC compared to the alternative candi-
date models evaluated. In contrary to global model [42, 
59], WBD did not improve the performance of models 
in all tested models. Total height seems to be a power-
ful predictor variable when combined with DBH, but it 
had at least the same statistical performance with the 
model with only DBH. Thus, we recommend the model 
with only DBH as predictor instead of that with DBH, TH 
and WBD together. The comparison using global models 
showed that the selected model for this study was more 
accurate for trees sized out of the fit data, suggesting that 
the selected model is reliable and can be used to estimate 
AGB in the study area with the same level of accuracy 
as the global model, and it has potential to be applied in 
other mountain regions in Mozambique, where mountain 
moist evergreen forests occur. However, our model could 
be improved with more data, particularly with larger size 
trees, but such trees are protected by the law of conserva-
tion areas in Mozambique. The BEF of this study can be 
applied to predict AGB through converting the volume 
table from national forest inventory developed by Mar-
zoli [4], however, BEF overestimate the AGB. This study 
suggests that despite being a disturbed conservation area, 
the MFR still has a large stock of carbon comparable with 
the mountain moist evergreen forest in the world, but 
with significant variability of AGB between plots. There-
fore, mountain most evergreen forest has a huge potential 
to provide financial resources through C-based payment 
for ecosystem services under REDD+ mechanism.
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