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Abstract 

Background: Wet tropical forests of Chocó, along the Pacific Coast of Colombia, are known for their high plant 
diversity and endemic species. With increasing pressure of degradation and deforestation, these forests have been 
prioritized for conservation and carbon offset through Reducing Emissions from Deforestation and forest Degradation 
(REDD+) mechanisms. We provide the first regional assessment of forest structure and aboveground biomass using 
measurements from a combination of ground tree inventories and airborne Light Detection and Ranging (Lidar). 
More than 80,000 ha of lidar samples were collected based on a stratified random sampling to provide a regionally 
unbiased quantification of forest structure of Chocó across gradients of vegetation structure, disturbance and eleva-
tion. We developed a model to convert measurements of vertical structure of forests into aboveground biomass (AGB) 
for terra firme, wetlands, and mangrove forests. We used the Random Forest machine learning model and a formal 
uncertainty analysis to map forest height and AGB at 1-ha spatial resolution for the entire pacific coastal region using 
spaceborne data, extending from the coast to higher elevation of Andean forests.

Results: Upland Chocó forests have a mean canopy height of 21.8 m and AGB of 233.0 Mg/ha, while wetland 
forests are characterized by a lower height and AGB (13.5 m and 117.5 Mg/a). Mangroves have a lower mean height 
than upland forests (16.5 m), but have a similar AGB as upland forests (229.9 Mg/ha) due to their high wood density. 
Within the terra firme forest class, intact forests have the highest AGB (244.3 ± 34.8 Mg/ha) followed by degraded and 
secondary forests with 212.57 ± 62.40 Mg/ha of biomass. Forest degradation varies in biomass loss from small-scale 
selective logging and firewood harvesting to large-scale tree removals for gold mining, settlements, and illegal log-
ging. Our findings suggest that the forest degradation has already caused the loss of more than 115 million tons of 
dry biomass, or 58 million tons of carbon.

Conclusions: Our assessment of carbon stocks and forest degradation can be used as a reference for reporting on 
the state of the Chocó forests to REDD+ projects and to encourage restoration efforts through conservation and 
climate mitigation policies.
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Background
Tropical forests have a prime role in carbon balance, 
biodiversity and society. They contribute significantly to 
global terrestrial carbon stocks, host more than half of 
Earth’s species [1], and millions of people depend on for-
ests for food, timber, and other economic and ecosystem 
services.

Yet tropical forests remain understudied and their car-
bon stocks are poorly estimated, notably due to the lack 
of available data, compared to temperate regions [2]. 
Improving carbon stocks estimations in the tropics, in 
particular in poorly known regions, would help under-
standing the global carbon budget better and would 
enable these regions to participate in projects such as 
Reducing Emissions from Deforestation and forest Deg-
radation (REDD+). These programs require regions or 
countries to report on the state of their forest to be able 
to qualify for carbon credits. In this paper, we focus on 
one of these regions: the Chocó region.

The lowland Pacific coast region of Colombia, Chocó, 
has been understudied due to its remote location and his-
tory. Famous botanist Alwyn Gentry conducted research 
in that region during the 1980s [3, 4], revealing that the 
Pacific coast region of Colombia has an outstanding 
biodiversity [5, 6] and is a major biodiversity hotpot [6]. 
There, about 20% of the plant species are endemic, in 
part because the Pacific Ocean and the western Andean 
mountain range encircling the region [7] have historically 
acted as a bridge between Central America and Amazo-
nia. However, the region is under threat of deforestation 
and degradation. Annual deforestation rate in Colombia 
has been estimated to 219,973 ha per year [8], of which 
6.1% (13,474  ha) comes from the Chocó region, which 
has suffered from significant ecosystem degradation [9]. 
In surrounding regions such as the Northwest Pacific 
Coast of Ecuador and Amazonian Colombia, extensive 
studies report high rates of degradation, mostly related to 
commercial logging and land conversion towards agricul-
ture [10, 11].

This study reports on the result of a project, called 
BioREDD, that was implemented in 2013 to estimate car-
bon emissions in the Pacific coastal region of Colombia 
[12]. Eight areas of three subregions were selected along 
the Pacific coast of Colombia for developing REDD+ pro-
jects. These areas cover a variety of ecosystems, from 
coastal mangroves (“Manglar”) and wetlands (“Guandal”) 
to terra firme forests on rugged landscapes (“Colinas”). 
The project was implemented in the territories of Afro-
colombian and indigenous communities who have agreed 
to the REDD+ project development, with the expectation 
of generating revenues in exchange for their conservation 
efforts. In these areas, forests have been degraded and are 
under threat of further degradation and deforestation, 

due to timber extraction for fuel and development needs, 
illegal logging, gold mining, and conversion of forests to 
agriculture and livestock.

Virtually no environmental data was available prior to 
this study because the region had been considered too 
remote and difficult to access. We designed a strategy 
combining airborne lidar data and field plots to create a 
representative sample of the forest structure and biomass 
of the region. We complemented these data with space 
borne data to predict forest height and aboveground bio-
mass (AGB) across the region. Specifically, we ask how 
limited ground and airborne data can be used to infer a 
region-scale map of aboveground biomass, together with 
its uncertainty. We then discuss the implications of our 
findings for a REDD+ strategy in the Chocó region.

Methods
The methodology (Fig. 1) has four distinct and integrated 
components including: (1) ground and airborne lidar 
sampling based on a certified carbon standard method-
ology, (2) development of unbiased lidar biomass mod-
els to convert the lidar height metric to AGB, (3) use of 
a machine learning algorithm to develop a wall-to-wall 
map of height and AGB of forests of Chocó over the 
entire Pacific coastal region of Colombia, and (4) assess-
ment of variations of forest structure and biomass density 
across the Chocó region by quantifying the uncertainty 
of estimates.

Study area
The mapped area is located over a 7° by 3° region, in the 
Northwest of South America. The study area covers more 
than 14.5 million ha, of which almost 10 million ha are 
forested (Fig.  2). Colombia defines a forest as an area 
greater than 1 ha, with a minimum tree cover of 30% and 
a minimum tree height of 5  m [13]. The vast majority 
of the forest area (90.8%) is covered by ‘terra firme’ for-
est on dry soils extending to higher elevation of Andes 
including montane forests over elevations greater than 
500  m above sea level (asl). Wetland forests (Guandal) 
cover 7.8% of the forested area in coastal zone at eleva-
tions below approximately 50  m from the sea level and 
mainly in the northern part of the region, along the 
Atrato River. Mangroves cover an additional 1.4% of the 
area along the brackish waters of the coast. These vegeta-
tion classes are mapped at 30 m spatial resolution based 
on a land use land cover (LULC) map that was validated 
during the BioREDD project, for which the airborne lidar 
data were used to train Landsat imagery to perform a 
supervised classification (see details in Additional file 1: 
SI.1; [12]). The terra firme forest class was divided into 
two subclasses, based on observations in the field and 
analysis of the lidar data: intact forest (characterized 
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by > 75% tree cover and height > 5 m; 63% of the area) and 
degraded and secondary forests (30–75% of tree cover; 
37% of the area), from multi-temporal Landsat analysis 
performed to establish the reference emission levels for 
the BioREDD projects (Additional file 1: Fig. S1).

Lidar and ground data sampling methodology
We combined four data layers representing climate, ele-
vation, soil and land cover to produce a stratified map 
representing a set of 36 forest strata that have similar 
environmental characteristics and homogeneous for-
est structure (Additional file  1: SI.2, Fig. S2). Collecting 
a representative sample of lidar data for each stratum is 
crucial to estimate biomass at regional scales. While hav-
ing a sample that is large enough to be statistically rep-
resentative of an area [14], it is also crucial to rely on a 
methodology that provides unbiased estimates [15–18]. 
In this work, we used a stratified random sampling, rec-
ognized as one of the few unbiased methodologies to 
estimate biomass at a regional scale [15, 18]. The strati-
fied map was used as a reference for the stratified ran-
dom sampling with airborne lidar flights for inventory 
of forest structure. We designed lidar acquisitions using 
49 flight lines with each flight line covering 500–2000 ha 
areas for a total of 83,000 ha of randomly sampled lidar 

data. The process of the lidar flight design followed the 
VT0005 methodology tool [18], taking into account the 
percent area of lidar coverage necessary, based on the 
number and area of strata to optimize the inventory sam-
pling (Fig. 2). Flight lines were selected randomly in each 
stratum within the project nodes using the Reversed Ran-
domized Quadrant-Recursive Raster (RRQRR) algorithm 
that is based on the implementation of the Generalized 
Random Tessellation Stratified (GRTS) algorithm [19]. 
The RRQRR toolbox allows for probability-based spati-
ality balanced sample designs to be implemented within 
a Geographic Information System (GIS). After the loca-
tions were selected, the flight lines were designed in three 
different sizes of 1-km width and with 5  km (500  ha), 
10 km (1000 ha), or 20 km (2000 ha) length to allow the 
required coverage in each stratum and for cost-effective 
airborne data collection across several strata. The design 
allowed the airborne flights to be acquired in an optimum 
configuration with transects covering large areas and 
using less time for turns and realigning for flight head-
ings. The orientation or heading of the flight lines were 
also selected randomly at 45° intervals. The lidar data 
were acquired using an Optech ALTM3033 at an eleva-
tion of about 1000 m, low enough to fly under clouds but 
high enough to cover relatively large swaths (500 m), with 

Fig. 1 Flowchart showing the steps leading to the production of an AGB map. Data inputs are shown in green, intermediate products are shown 
in grey, while operations are shown in pink and final products in yellow. Operations and products related to the uncertainty analysis are shown in a 
dashed box. AGB aboveground biomass, TCH mean top canopy height, LCA large trees canopy area
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a point density of 4 returns/m2. Lidar scenes are for the 
most part located in lowland forests, with only 3 tran-
sects located in areas > 500 m asl elevation.

A canopy height model (CHM) was created for each 
lidar scene by taking the height difference between the 
digital surface model (DSM) and the digital terrain model 
(DTM) after normalizing the point clouds and posting 
the data at 1  m resolution (Additional file  1: SI.3). The 

CHM data were gridded at 100 m × 100 m cells by keep-
ing the mean top canopy height (TCH) from 1  m2 pix-
els as the key lidar metric for developing biomass models 
and referred to as Lidar_TCH throughout the paper.

A total of 15 clusters of permanent tree plots were set 
in 15 of the lidar transects covering different strata in the 
BioREDD regions (Fig. 2). Each cluster plot has one per-
manent plot of 1 ha (100 m × 100 m) and eight ‘satellite’ 

Fig. 2 Location of lidar scenes and ground plots over forest, wetland forest and mangrove (a). Lidar scenes are not to scale for visualization 
purposes. Location of study area in South America (b). Examples of lidar canopy height models of terra firme forest, wetland forest and mangrove (c)
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plots of 0.25  ha (50  m × 50  m). The satellite plots are 
located at 250 m and 500 m away from the center perma-
nent plots in four cardinal directions (Additional file  1: 
Fig. S3). This configuration aims to capture the structural 
and species composition variability of a larger area, and 
allowed [9] to develop the first local allometric equation 
for the region, which is used in this study. Each plot of 
a cluster is considered independent because spatial cor-
relation length in tropical forests remains very small and 
was reported to become nonsignificant around 20 m [20]. 
The center location of the permanent plot was selected 
randomly in the lidar transect to allow sampling all forest 
conditions such as fragmented, degraded or secondary 
forests. In addition, 45 plots of 0.25  ha were systemati-
cally sampled in one of the lidar flight lines covering the 
terra firme and wetland forests. Field sites were mostly 
established in coastal areas at elevations < 100 m asl. Two 
sites were established above 200 m asl, in the Northern 
part of the study area (Chigorodo: 465  m, and Chonta-
dural: 207  m). The implications of using field and lidar 
surveys distributed in three sub regions are addressed in 
the Discussion section. A total of 30,394 trees with diam-
eter at breast height (DBH) ≥ 10 cm were measured using 
standard methodology for tropical forest inventory [21], 
with trees being tagged and identified botanically to spe-
cies or morphospecies in the field for wood density quan-
tification. Although a 10 cm DBH threshold is standard 
to estimate biomass in tropical forests, we acknowledge 
that not including smaller trees might have an impact on 
our biomass estimation of degraded areas, where a large 
number of small trees might be present. However, there 
is, to our knowledge, no data available to quantify the 
contribution of these small trees to the total AGB. Lianas 
were not sampled and the DBH of trees with buttresses 
was measured 50 cm above the buttress.

Wood density values were assigned to each tree using 
the Global Wood Density database for South America [22, 
23], either at the species (12% of trees), genus (54%) or 
family level (24%). For all unidentified trees or of species 
absent from the database (10%), we assigned the mean 
wood density of the plot. The AGB was then estimated 
for each stem using two regional allometric equations, 
and the AGB values were summed over the plots [7] (see 
Additional file  1: SI.3 and Table  S1, Eqs. S1, S2). Wood 
density information was used to determine the average 
wood density of the three forest classes used in our study, 
based on the forest class assigned to the plots they belong 
to: terra firme (25,861 trees, WD = 0.60 g cm−3), wetland 
(3918 trees, WD = 0.49 g cm−3) and mangrove (615 trees, 
WD = 0.79 g cm−3). The mean wood density of each class 
was assigned to the corresponding pixels of the LULC 
map. This wood density map product is referred to as 
“WD_map” (Fig. 2).

Development of the lidar biomass estimator
We used geolocation of ground plots and extracted all 
1 m lidar CHM pixel values that fell in the plots. These 
canopy height values were used to compute the lidar-
derived mean top canopy height (TCH) for each plot. In 
addition to the 1 ha plots, the closest 0.25 ha plots were 
aggregated four by four in order to obtain ‘aggregated’ 
1 ha plots. This resulted in a calibration dataset of 1 ha 
plots. We excluded cluster plots where 0.25 ha subplots 
were missing or were falling outside of a lidar scene, 
resulting in a cover area of less than 1 ha. However, these 
plots were used to estimate the mean wood density of 
each class.

We then developed a lidar-derived AGB model using 
the nonlinear least squares “nls” function in R [24], based 
on a total of 43 1  ha plots (15 real 1  ha plots, and 28 
aggregated ones, Additional file 1: Table S1). Mean wood 
density of each plot (WD) and TCH were used in devel-
oping models [25, 26] that can be applied to all lidar data 
and mean wood density of each forest type:

A leave-20%-out cross-validation with 1000 iterations 
was used to evaluate the model and determine its  R2, 
RMSE and bias.

Remote sensing predictors
Several remote sensing data were used as predictors in 
our random forest model. We used four Landsat8 bands: 
Red, Near Infrared (NIR) and two Short-wave Infrared 
(SWIR) bands covering the period of 2015–2016; two 
ALOS-2 PALSAR bands: HH and HV from 2015 acqui-
sitions; and elevation from the Shuttle Radar Topogra-
phy Mission (SRTM). Landsat provides information on 
forest type and canopy structure [27], ALOS PALSAR 
radar measurements at L-band wavelengths (~ 24  cm) 
capture the forest structure and biomass, separating low 
and high biomass areas [28], and SRTM imagery provides 
landscape elevation and measurements that are also cor-
related with forest height in degraded and fragmented 
areas [29] (see Additional file  1: SI.4 for more details). 
For pixels having no data in the ALOS layer due to topo-
graphical effects, the “surrogate” function available in RF 
algorithm allowed to predict H using the valid RS layers 
only, preventing holes or missing information in the final 
forest height map.

The images were co-registered and aggregated at 
100-m spatial resolution. In addition to these 7 bands, we 
also created simple texture layers representing the local 
standard deviation of each band, based on a 5 by 5 pixel 
window from the original resolution of each dataset. 
Thus in total, 14 bands were used as an input for the RF 

(1)AGB = a(TCH ×WD)b
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algorithm and are referred to as RS predictors (see Addi-
tional file 1: SI.4).

Mapping forest height and biomass
Random forest algorithm
The Random Forest (RF) machine-learning algorithm 
is an ensemble model of decision trees trained with 
selected number of features and a set of training data 
(lidar derived aboveground biomass) using a bagging 
technique [30]. RF algorithm has been used extensively 
to develop spatial estimates of the training quantity such 
as AGB across landscapes represented by different meas-
urements from satellite imagery [31, 32]. Here, we use the 
RF algorithm in the form of regression trees based on the 
training data sets and remote sensing features that will 
provide estimates of forest height or AGB for image pix-
els in the form of the unweighted average of a collection 
of trees [18]. RF is often preferred to multiple regressions 
when a large number of predictors is used. It can handle 
multilinearity and detect outliers [33, 34]. The algorithm 
often provides reliable and unbiased estimates of forest 
height or AGB when the remote sensing data layers have 
strong sensitivity to a large range of biomass, and when 
the number of training data are large and widespread 
across the landscape within the study area [32]. How-
ever, at validation stage, the spatial accuracy of RF esti-
mates must be quantified using an independent data set. 
Indeed, it is known that the RF algorithm tends to push 
the predictions towards the mean by overfitting when the 
data layers are noisy or have less sensitivity to the param-
eter of interest, thus failing to account for extreme values 
[32]. Here, we used the Matlab version of the random for-
est function “TreeBagger” and applied a bias correction 
approach developed to improve the dilution bias intro-
duced by overfitting [32].

Lidar-derived canopy height and AGB were used as 
the response variable, while spaceborne remote sens-
ing (RS) layers were the predictor variables in RF algo-
rithm to predict forest height (H) and AGB over the 
study area. Our analysis indicated that creating a regional 
height map based on TCH from lidar (lidar_TCH layer) 
independently of the forest class and then converting 
this map to AGB using WD_map yielded more accurate 
results than predicting AGB directly from lidar-derived 
AGB (Additional file  1: SI.5, Table  S2). We report the 
mean and standard deviation of H and AGB for each for-
est class: terra firme forest (including intact, degraded 
and secondary forest), wetland forest and mangrove.

Separating degrees of forest degradation
In addition to the three subclasses of terra firme forest 
mentioned above and based on the LULC map, we also 
report H and AGB across a forest degradation gradient, 

ranging from intact forest to severely degraded forest, 
based on a forest degradation index map (FDI) [35]. FDI 
is a remote sensing derived index, calculated for all pixels 
belonging to the terra firme class:

where TCH is the top mean canopy height (m), LCA rep-
resents the percent area covered by large trees (H > 27 m, 
tree crown > 100  m2) [25] and PC is the percentage of 
vegetation cover (> 5  m). These three maps were devel-
oped using the same RF method as the height map, based 
on lidar data. The FDI product was trained over forests 
having different degrees of degradation to determine 
thresholds separating terra firme into four classes: intact, 
light, moderate to high, and severe degrees of degrada-
tion (see Additional file 1: SI.6). These classes were used 
as a post-classification tool to quantify H and AGB for 
different degrees of degradation of the terra firme forests.

Uncertainty analysis
The uncertainty analysis includes a bootstrapping cross-
validation approach using the RF model that provides 
a prediction map at the pixel level. We performed a 
leave-30%-out cross validation to assess the Height and 
AGB maps, where the lidar scenes are the sampling unit: 
at each iteration  (Nit = 100), 30% (N = 14) of the lidar 
scenes are removed from the training sample to report 
the overall mean  R2, RMSE and bias of all iterations. The 
iterations provided 100 height and hence AGB maps that 
were aggregated to provide the pixel level variance of the 
predictions.

However, the overall uncertainty associated with 
the AGB estimation of each pixel should also include 
uncertainty from lidar-biomass model and the ground-
estimated biomass in addition to the RF prediction in a 
standard error propagation approach [36]:

where σtotal(u) is the uncertainty of the AGB estimate at 
the unit area (pixel), σ 2

RS (u) is the error of the map for 
each pixel derived from the bootstrapping cross-valida-
tion, σ 2

modeling (u) is the error associated with the lidar-
derived AGB model, including the GPS error causing 
discrepancies between the lidar metrics and the field 
AGB, and σ 2

fielddata(u) is the combined errors due to field 
measurements and biomass allometry. σ 2

fielddata(u) was 
estimated based on a comparison of the DBH, H and WD 
measurements by two different teams in the field. The 
uncertainty related to measurements of DBH, H and 
wood density was used to estimate the error related to 
the allometric model, following [37] methodology, lead-
ing to an uncertainty of measurement and allometry of 

(2)FDI = TCH + LCA+ PC

(3)
σtotal(u) =

√

σ 2
RS(u)+ σ 2

modeling (u)+ σ 2
fielddata(u)
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21.4%. The calculation of the error for the height map 
was only based on the variance of the height map itself as 
the airborne lidar measurement errors can be considered 
relatively negligible.

The uncertainty of the AGB estimates for each vegeta-
tion class was estimated by integrating the pixel uncer-
tainties described above over the regions of interest and 
accounting for the spatial correlation of the uncertainties 
as follows [36, 38]:

where σ 2(class) is the variance of the H or AGB estimates 
for the vegetation class of interest; m is the number of 
pixels; ρ(d) is the spatial correlation function in terms 
of distance d based on a piecewise exponential semi-
variogram model; and σuiσuj are the estimated variance 
associated with the height or AGB values at each pixel. 
We also used a ‘leave-one-scene-out’ cross validation 
scheme: at each iteration, we took one of the lidar scenes 
(49) out of the training data pool, and used it as testing 
data, similar to a jackknife cross-validation. This valida-
tion avoids spatial autocorrelation and assesses how the 
final map performs in areas where lidar data are unavail-
able. We evaluated our results in terms of the coefficient 
of correlation  (R2) between the observed and predicted H 
or AGB, root mean square error (RMSE) and bias (mean 
difference between observed and predicted). For the 
leave-one-scene-out scheme, we report the results for the 
49 iterations combined (total of testing points = number 
of lidar pixels), as well as the average  R2, RMSE and bias 
of all iterations.

Finally, mean height and mean AGB of each vegetation 
class from the lidar “truth” were compared to the inde-
pendently predicted data from all the leave-one-scene-
out maps. We report the differences in mean height and 
AGB in each class in terms of percentage.

Results
Lidar‑derived AGB model
The best model to infer AGB from lidar-derived TCH at 
1 ha was:

where WD is the plot-mean value of wood density (in 
g  cm−3), and TCH is the plot-mean top canopy height 
(in m) from lidar observation (Fig.  3). We chose to use 
this power law model fit with exponent of approximately 

(4)
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m
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m
�
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�

σui,σuj
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
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�
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σ 2
ui + 2
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�

i=1
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i<j

ρ(d)σuiσuj





(5)AGB = 17.8(TCH ×WD)1.0

1  (R2 = 0.72, RMSE = 31.6, Bias = 0.11) to stay consistent 
with previous studies, although a linear fit gave similar 
results (with a small intercept of 2.5 Mg/ha). In the fol-
lowing, we used Eq.  (5) to estimate AGB, allowing to 
account for various forest types characterized by differ-
ent mean wood density.

Predictions of forest height and AGB
Distribution of forest height and biomass predicted from 
the RF algorithms are shown in Fig. 4 at 100 m × 100 m 
(1 ha) gridded maps. The maps are color-scaled to show 
the variations of AGB and height estimates across the 
landscape separating the coastal vegetation from the 
interior terra firme and upland forests along elevational 
gradient, and intact old growth forests from degraded 
forests. The maps show a strong correspondence between 
height and AGB as expected from the lidar-biomass 
model. However, the patterns are also modulated by the 
wood density of forest types within each stratum, allow-
ing for larger variability of AGB across the region.

Fragmentation and forest degradation are visible in 
both maps. These features are explained by the contribu-
tion of both ALOS and Landsat layers (Fig. 4, example 2). 
Results also show that intact forests are more homogene-
ous, with a standard deviation of 35 Mg/ha, compared to 
standard deviations around 60  Mg/ha for the two other 
classes.

Our maps present artifacts in some areas covered 
by lidar scenes (Fig. S5), due to the over-fitting of the 
RF model. RF tends to adapt closely to variations of 
the training sample, especially when a large number of 
trees are used to build the model [39]. We tested which 
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Fig. 3 Lidar-derived AGB allometric model
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parameters were optimal to get the best results in terms 
of  R2, RMSE and bias and found that a number of 500 
decision trees, one variable for random feature selection 
and a minimum of 13 observations per tree leaf were giv-
ing the best results. Reducing the number of trees might 
smooth out the lidar scenes from the maps but would 
also decrease the general accuracy. We chose to keep a 
high number of trees even though it makes these artifacts 
more visible.

Regional statistics of AGB estimates
Across the region, mean height was 21.1 m: 21.8 ± 4.6 m 
in the terra firme class, 13.5 ± 7.9  m in the wet-
land class and 16.5 ± 6.4  m in the mangrove class 
(Fig.  4, Table  1), with low standard error in all classes 
(< 0.16  m). Mean AGB of terra firme forests was found 
to be 232.99 ± 49.4  Mg/ha, with 117.46 ± 68.5  Mg/
ha in the wetland class and 229.91 ± 89.7  Mg/ha in 

the mangrove class (Table  1). Overall mean AGB was 
224.31 ± 60.19 Mg/ha. AGB of the mangrove class is sim-
ilar to AGB of the terra firme class: the lower mean height 
in the mangrove class was compensated by a higher WD 
(Fig.  4, example 1). Table  1 shows how the degradation 
gradient is reflected in its height and AGB distribution, 
ranging from 23.86 ± 4.12  m (or 254.79 ± 24.83  Mg/ha) 
in intact forest to 9.01 ± 4.62 m (or 96.24 ± 19.32 Mg/ha) 
in severely degraded areas. Within the terra firme class, 
degraded and secondary forests had lower mean height 
and AGB than intact forest (Table 1).

Characteristics of forest degradation
The forest degradation classification based on FDI 
revealed that the area covered by intact forest is larger 
than what the LULC map indicates (~ 7  M  ha instead 
of ~ 6  M). Their height and AGB were higher (but 
not significantly different), while degraded forest had 

Fig. 4 Height map (a) and AGB map (b). Example 1 shows how mangrove forest stands out in the AGB map because of its higher wood density. 
Example 2 displays the signature of fragmentation, as seen in ALOS and Landsat
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lower height and AGB (but not significantly different). 
This is because some intact forest pixels were classified 
into degraded forest in the FDI map, and vice versa 
(Additional file  1: Table  S3, Fig. S4). 84.1% of pixels 
classified as intact forest in the LULC map remained 
in the intact forest class in the FDI map, while 56.6% 
of the degraded or secondary forest pixels of the LULC 
map belong to the intact forest class in the FDI map 
(Additional file  1: Table  S3). The overall confusion in 
the LULC map between intact and degraded forests 
suggest that the use of physical metrics such as the 
ones used in the FDI may be a more reliable approach 
to separate degraded from intact forests.

The new classification of degradation forest from 
the FDI approach provides large variations of forest 
biomass among degraded forests (Table  1). On aver-
age, forest degradation in Chocó region can reduce the 
mean biomass of intact forests by more than 30% but 
this varied from 19% for lightly degraded forests as in 
selective logging to about 62% for severely degraded 
forests. Our results provide, for the first time in this 
region, the ability to calculate the emission factors 
(changes of forest biomass from intact to any land use 

class) for different types and area of degradation for 
the region depending on the intensity of degradation.

Uncertainty analysis
Uncertainty map and cross‑validation
The uncertainty map reported in Fig. 5a reflects the sta-
bility of our model. Uncertainty is higher when biomass is 
high, with more uncertainties in mangroves than in wet-
land forests (Fig. 5a). The pixels covered by lidar scenes 
have a higher standard deviation than their neighbors 
(Fig. 5a, subset). This is because taking a scene out results 
in predicted pixels that differ from the lidar predictions. 
The uncertainty map associated to the height map shows 
similar patterns and is not reported here.

Leave-30%-out cross-validation showed that height 
could be predicted with a  R2 of 0.72, RMSE of 4.66  m 
and a bias of 0.11 m (Table 2). For AGB, the  R2 was 0.68, 
RMSE was 50.66 Mg/ha and bias was 1.18 Mg/ha. Results 
for the leave-one-scene-out validation are also reported 
in (Table 2, Fig. 5b, c).

Leave-one-scene-out cross-validation revealed a large 
range of goodness of fit values in the height variable  (R2 
between 0.01 and 0.93; Additional file 1: SI.7, Table S4). 

Table 1 Mean H and AGB and SE for all and vegetation classes

Fields in italics indicate which cover map (LULC or FDI) was used to determine classes

Metric Vegetation class Mean ± stdev Standard Error (SE) Area (ha)

Classes derived from the LULC map

Height (m) All 21.11 ± 5.47 0.06 10,681,445

Terra firme 21.81 ± 4.63 0.06 9,702,404

Intact forest 22.88 ± 3.26 0.06 6,116,808

Degraded + Secondary forest 19.90 ± 5.84 0.07 3,585,596

Wetland 13.52 ± 7.88 0.1 795,910

Mangrove 16.45 ± 6.42 0.16 183,131

AGB (Mg/ha) All 224.31 ± 60.19 2.58 10,681,445

Terra firme 232.99 ± 49.40 2.77 9,702,404

Intact forest 244.31 ± 34.82 2.94 6,116,808

Degraded + Secondary forest 212.57 ± 62.40 6.86 3,585,596

Wetland 117.46 ± 68.47 4.12 795,910

Mangrove 229.91 ± 89.74 7.06 183,131

Classes derived from FDI (terra firme only)

Height (m) Intact 23.86 ± 4.12 0.06 7,171,530

Degradation (all classes) 16.02 ± 4.49 0.06 2,530,874

Light degradation 19.15 ± 2.67 0.06 1,147,469

Moderate to high degradation 15.61 ± 3.19 0.06 923,431

Severe degradation 9.01 ± 4.62 0.07 459,974

AGB (Mg/ha) Intact 254.79 ± 24.83 2.98 7,171,530

Degradation (all classes) 171.11 ± 49.32 2.25 2,530,874

Light degradation 204.59 ± 15.70 2.63 1,147,469

Moderate to high degradation 166.81 ± 30.54 2.35 923,431

Severe degradation 96.24 ± 19.32 2.66 459,974
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Fig. 5 Uncertainty of AGB map, taking the error of the random forest mapping and the error of the lidar model. Example 1 shows how some lidar 
scenes show in the uncertainty map, because their prediction varies a lot depending on whether or not they were part of the training data for 
different iterations (a). Scatter plots of test samples based on the leave-one-scene-out cross validation: height (b), AGB form H (c)

Table 2 R2, RMSE and  bias of  height and  biomass with  the  one-scene-out cross  validation (CV) and  the  leave-30%-out 
cross validation

Metric CV method R2 RMSE Bias R2 total RMSE total Bias total

H (in m) One-scene-out 0.45 4.33 0.02 0.71 4.65 − 0.13

30% out 0.72 4.66 0.11 – – –

AGB (in Mg/ha) One-scene-out 0.45 46.45 0.74 0.68 50.24 − 1.07

30% out 0.68 50.56 1.18 – – –
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Figure 5 and Additional file 1: Table S4 show a saturation 
of the predictive value of the model above ~ 25–30  m, 
leading to an underestimation of height for these pixels, 
and consequently of AGB. Pixels with a height of 25  m 
or higher represent 22% of the forested area, while pixels 
higher than 30  m represent less than 1%. Also, the two 
scenes having a mean elevation above 500 m were poorly 
predicted (Additional file 1: Table S4).

Vegetation classes uncertainties
Uncertainties related to each vegetation class are 
reported in Table  1 and were estimated using Eq.  (2) 
based on semi-variograms (Additional file 1: Fig. S6).

The leave-one-scene-out validation also provided some 
insight on the uncertainty of each class within the lidar 
scenes: the regional map was found to predict average 
height and AGB well, with a difference of only 0.21% 
(Table 3). The model also had a good performance across 
most forest classes. Note that in wetland and mangrove 
forests the map under-predicted the variables by about 
4%.

Discussion
Critical steps in mapping AGB
Our results suggest that developing a map of forest height 
directly from the lidar data before converting the heights 
to AGB improves the estimation accuracy (Additional 
file 1: SI.5). Lidar-biomass models may introduce uncer-
tainty in the biomass estimation that may be propagated 
spatially into the map through the machine learning 
approach. The height map is produced from extrapolat-
ing the observation of spatial remote sensing data from 
airborne data to the entire region using satellite based 
remote sensing data that are sensitive to height, can-
opy structure and their spatial variations. Furthermore, 
by producing a map of forest mean canopy height or 

structure, it is easier to implement different estimators of 
AGB and further improve the AGB map if more ground 
data are collected or new models are developed. Both the 
lidar-derived AGB model and the wood density map can 
be updated in the future and be applied on the regional 
height map.

The biomass estimation from AGB models depends 
on the mean wood density values at the plot scale. We 
used the global wood density database (GWDD) [23] to 
obtain wood density of each vegetation class based on 
the identified trees of the field data. We compared our 
results to a similar method based on average wood den-
sity of each site from a recent study that uses a branch to 
stem wood density relationship from a selected number 
of species [9]. This method led to a similar lidar-derived 
AGB model, with a mean difference in estimated AGB of 
0.66 Mg/ha and maximum difference of 3.69 Mg/ha in all 
field plots. However, when using a different mean wood 
density for each class of vegetation for converting the 
height map to biomass, the results may be different. For 
example, the sampling approach gives a WD of 0.562 for 
the terra firme class, 0.65 for mangroves, and 0.538 for 
wetlands, instead of 0.60, 0.785, and 0.485, derived from 
global datasets respectively, leading to a − 5.5% difference 
in AGB across the whole map (− 8.7% in terra firme for-
est, − 17.0% in mangrove forest and + 10.7% in wetland 
forest).

Furthermore, we used the same plot level mean wood 
density for intact, degraded and secondary forests, 
although degraded and secondary forests often have 
lower wood density values in this region [40]. By overes-
timating the biomass of degraded forests due to higher 
wood density, the emissions from forest loss and degrada-
tion may be underestimated. The variation of wood den-
sity across elevation gradients and successional range is 
another source of uncertainty. For instance, [25] showed 

Table 3 Comparison of mean H and AGB in validation area

Metric Class Mean lidar 
“truth” ± stdev

Mean independent 
prediction ± stdev

Area (ha) Difference 
in mean (%)

Height (m) All 19.38 ± 7.97 19.34 ± 7.11 59,938 0.21

Terra firme 20.84 ± 7.06 20.95 ± 5.88 48,824 0.51

Intact forest 23.03 ± 5.16 22.89 ± 4.14 28,727 0.21

Degraded + Secondary forest 17.83 ± 7.23 18.26 ± 6.64 21,336 2.41

Wetland 12.16 ± 8.59 11.64 ± 7.81 9563 4.30

Mangrove 18.14 ± 6.41 17.39 ± 5.12 1551 4.11

AGB (Mg/ha) All 204.67 ± 87.28 204.25 ± 78.47 59,938 0.21

Terra firme 222.54 ± 75.44 223.72 ± 62.77 48,824 0.53

Intact forest 245.98 ± 55.13 244.5 ± 44.16 28,727 0.60

Degraded + Secondary forest 190.40 ± 79.02 195.05 ± 72.98 20,204 2.44

Wetland 105.66 ± 74.62 101.08 ± 67.82 9563 4.33

Mangrove 253.52 ± 89.63 243.06 ± 71.60 1551 4.13
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that large trees in Chóco had a higher wood density than 
small trees. It has also been shown that elevational varia-
tions of wood density in the equatorial Andes were slight 
but significant [41]. For these reasons, it would be good 
to address this point in the Chocó region in the future.

While our ground dataset is relatively large in number 
of plots and plot size for this type of study relating field 
plots to lidar metrics, it only covers the dominant forest 
types, therefore potentially misrepresenting the diver-
sity of environmental conditions in the area. Moreover, 
we had more plots, and therefore more trees, located in 
terra firme forest than in wetland forests and mangroves, 
increasing the uncertainty for these two classes. Finally, 
the land cover map we used to assign the right wood den-
sity to each pixel might also have some errors that can 
propagate to the estimation of AGB. For instance, wet-
land forest and mangroves being often adjacent, there is 
a risk of misclassification that is difficult to avoid and can 
give different results using Eq. 3, with  WDwetland = 0.49 g/
cm3 and  WDmangrove = 0.79  g/cm3. Since approximately 
90% of the forested area belongs to the terra firme class, 
the overall uncertainty of the map is not expected to be 
significantly affected by the uncertainty of these two 
classes.

Mangroves were found to have a high mean AGB even 
though their mean height is lower than the one of the for-
est class, emphasizing the importance of including wood 
density as a parameter of the AGB model, in addition to 
height. Wetland forests have the lowest mean AGB, since 
they are characterized by a lower TCH and a lower wood 
density, due in part to the presence of palm species [9]. 
These forests are dominated by the Myristicaceae family, 
largely traded in the region to produce commercial wood.

Carbon storage potential of degraded forests
We described an approach to create and validate a 
height map and an AGB map at 100 m resolution in the 
Chocó region of Colombia. Such maps are essential to 
the BioREDD project and represent one of the first steps 
towards assessing the natural resources of the Chocó 
region. The biomass map is a tool providing important 
baseline information on the state of the Chocó forests, 
highlighting issues regarding deforestation and degrada-
tion. Degraded forests represent 37% of the terra firme 
class, or over 3 million hectares, and had on average an 
AGB 23% lower than intact terra firme forests (33% when 
relying on the FDI classification). This converts to an esti-
mated biomass loss of 115 million Mg across the region 
(or 212 million Mg when relying on FDI). Although the 
study area is one of the least developed in Colombia, the 
fact that 37% of the pixels of terra firme forests are clas-
sified as degraded suggests that humans already have 
a massive impact on this ecologically important region. 

Forest removal, associated to the high amount of rainfall 
in the area (> 4000  mm  years−1), leads to impoverished 
soils and low-productivity agricultural and cattle-ranch-
ing systems. Knowing where these areas are located and 
how severe the damages are helps address degradation 
issues and focus efforts on these areas to avoid further 
deforestation. Efforts to develop alternative non-timber 
forest exploitation models will be paramount to protect 
forest functioning and biodiversity. This map could also 
be an important tool in future biodiversity mapping of 
the region, considered a biodiversity hotspot.

In addition to the LULC map, we proposed an alterna-
tive method relying on a forest degradation index based 
on canopy height, forest percent cover and presence of 
large trees. Similar FDI indices could be used in other 
forests and become a standard way to classify forest deg-
radation, since they are based on the general assumption 
that an intact forest should have a relatively high canopy, 
a high percent cover and large trees. On the opposite, 
a degraded forest is more likely to have a lower canopy 
height, a low forest percent cover and less large trees.

Our maps can be used as a benchmark for peo-
ple involved in programs such as BioREDD and other 
stakeholders, to better grasp the potential of the region 
in term of its forest resources and guide them in their 
decision-making. The main goal of the BioREDD project 
was to help local communities drive sustainable develop-
ment, in part based on carbon revenues and sustainable 
agricultural practices. This biomass map, along with basic 
GIS tools, will help them quantify the amount of carbon 
specific areas hold, and locate areas that would be the 
most favorable to the development of agriculture with a 
minimal impact on the forest and its biodiversity. Such 
biomass maps, developed following the required IPCC 
guidelines, are the first step toward potential future pro-
jects such as REDD, which require regions or countries 
to report on the present state of their forests. Although 
these programs strongly depend on developed countries 
to be implemented and be successful, providing high 
quality biomass products is essential for regions such as 
Chocó.

This work shows how airborne lidar data can be used 
to complement limited ground data, which is very help-
ful in remote areas where ground data are difficult to col-
lect on a large scale, such as in the Chocó region [26]. The 
large number of lidar pixels used as the calibration data-
set allowed us to compensate for the relatively limited 
inventory data that was collected. The high coefficient of 
correlation between inventory-estimated AGB and lidar-
derived TCH and low bias allowed us to develop a reli-
able model able to convert forest height to biomass over 
the whole Chocó region.
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Distribution of ground and lidar measurements
The BioREDD project at the origin of this study focused 
on three sub-regions of the Chocó Biogeographic corri-
dor, where lidar data and field data have been collected 
[12]. This clustering of data in three areas may have had 
an impact on the results, especially if the forest struc-
ture of the areas that were not covered by lidar is differ-
ent from the one of these three regions. Our uncertainty 
analysis, especially through the leave-one-scene out 
validation, allowed us to have a more realistic estimate 
of uncertainty over areas where there was no ground or 
lidar data. Although these tests were made within the 
three regions of interest of the Bioredd project, this was 
the best way we found to estimate the overall uncertain-
ties in the region. Without any other data sets in the in-
between regions, we cannot evaluate the uncertainty 
better than our simulations from the machine learning 
and existing lidar samples. Future research in the Chocó 
region should focus on adding field data and/or lidar 
scenes in these in-between areas in order to have a more 
homogeneous coverage of the region and to validate 
our results in large areas where no lidar data have been 
acquired.

Improvements on uncertainty estimates
We introduced a new cross-validation method based on 
removing sequentially a single lidar scene. This approach 
follows closely the jackknife cross-validation concept 
[42], and is an effective way to test how the model is per-
forming in areas not covered by lidar data. This method 
provides more insights on the lidar sampling approach 
and how to improve the sample size and area covered by 
lidar for future monitoring of forest structure and bio-
mass. It also provides a more conservative evaluation of 
the performance of the map, with a lower mean  R2 across 
iterations (Table 2).

The leave-one-scene-out cross-validation also allowed 
us to highlight specific issues: the goodness of fit var-
ied greatly across scenes depending on the variations of 
TCH and the landscape topography. We found that the 
uncertainty of the map was significantly larger in areas of 
TCH > 30 m where the sensitivity of the satellite data to 
extrapolate the lidar height over the landscape was less. 
The uncertainty of the map is also larger in higher ele-
vation because most of the training data from airborne 
lidar are in low elevation and around the coastal forests 
where the REDD projects were concentrated, leading 
to larger ambiguity in representing forests across steep 
slopes (Additional file 1: Fig. S7). Users should therefore 
keep in mind that the AGB map has a large uncertainty in 
high elevation areas.

Future remote sensing data from BIOMASS and 
NASA-ISRO Synthetic Aperture Radar (NISAR) mis-
sions with improved relation to forest structure can help 
reducing the uncertainty in high biomass and dynamic 
forests. BIOMASS is a P-band radar mission led by the 
European Space Agency (ESA) that will launch in 2023 
and will map forest height and biomass at a resolution 
of 200 m. The BIOMASS instrument operates at a wave-
length long enough to penetrate the structure of dense 
tropical forests such as Chocó. NISAR is a L-band radar 
mission that is set to launch in early 2022 and will, among 
other things, estimate forest biomass globally at a spatial 
resolution of 100 m. NISAR will be most useful to track 
the temporal changes of forest degradation, with a repeat 
pass of 6 to 12 days.

Conclusion
The maps produced in this study provide the variations of 
forest structure and the aboveground biomass, particu-
larly in lowlands of the Pacific coast of Colombia and for 
the first time, captures the impacts of forest degradation 
in the poorly known Chocó region. The maps can be used 
as a new reference for reporting on the state of the for-
est for regional emission reduction activities and REDD+ 
projects, making it a powerful tool for decision-making. 
The uncertainty of the maps representing the lowland 
forests was relatively low, suggesting the methodology 
of systematic lidar inventory of forests a powerful tool 
to be used for the other regions of Colombia or South 
American rainforest. The lack of systematic ground for-
est inventory plots in the region has prevented large scale 
research on the forest structure, biomass and the rich 
ecological diversity of forests of Chocó or the Colombian 
Amazon. Our approach has already been implemented in 
other countries for national forest inventory in the Dem-
ocratic Republic of Congo (DRC) [26], Kalimantan [35] 
and Brazil [43].

Our results also suggest that despite the low uncer-
tainty of the derived forest biomass in lowland land 
cover classes, the uncertainty over areas without lidar 
and ground samples, or high elevation remains relatively 
large. Improving lidar and ground sampling in these 
regions and using advanced remote sensing observations 
such as terrain corrected radar imagery may improve the 
mapping approach in these regions.

Additional file

Additional file 1. Detailed information on LULC map, stratification map, 
field data, remote sensing predictors, FDI map and methodology.
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