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Abstract 

Background: In order to use in situ measurements to constrain urban anthropogenic emissions of carbon dioxide 
 (CO2), we use a Lagrangian methodology based on diffusive backward trajectory tracer reconstructions and Bayesian 
inversion. The observations of atmospheric  CO2 were collected within the Tokyo Bay Area during the Comprehensive 
Observation Network for TRace gases by AIrLiner (CONTRAIL) flights, from the Tsukuba tall tower of the Meteorologi-
cal Research Institute (MRI) of the Japan Meteorological Agency and at two surface sites (Dodaira and Kisai) from the 
World Data Center for Greenhouse Gases (WDCGG).

Results: We produce gridded estimates of the  CO2 emissions and calculate the averages for different areas within 
the Kanto plain where Tokyo is located. Using these inversions as reference we investigate the impact of perturbing 
different elements in the inversion system. We modified the observations amount and location (surface only sparse vs. 
including aircraft  CO2 observations), the background representation, the wind data used to drive the transport model, 
the prior emissions magnitude and time resolution and error parameters of the inverse model.

Conclusions: Optimized fluxes were consistent with other estimates for the unperturbed simulations. Inclusion of 
CONTRAIL measurements resulted in significant differences in the magnitude of the retrieved fluxes, 13% on average 
for the whole domain and of up to 21% for the spatiotemporal cells with the highest fluxes. Changes in the back-
ground yielded differences in the retrieved fluxes of up to 50% and more. Simulated biases in the modelled transport 
cause differences in the retrieved fluxes of up to 30% similar to those obtained using different meteorological winds 
to advect the Lagrangian trajectories. Perturbations to the prior inventory can impact the fluxes by ~ 10% or more 
depending on the assumptions on the error covariances. All of these factors can cause significant differences in the 
estimated flux, and highlight the challenges in estimating regional  CO2 fluxes from atmospheric observations.

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Anthropogenic emissions of  CO2 and the other green-
house gases (GHGs) impact the atmospheric radiative 
budget and hence climate [1]. Urbanisation has concen-
trated more than 50% of the global population, at least 
70% of fossil-fuel carbon dioxide emissions (of which 

nearly 44% direct emission) into a small fraction of the 
Earth’s land surface [2]. Estimations of  CO2 fluxes at sub-
continental scales contain significant uncertainties (up to 
50%), and these uncertainties are larger for finer spatial 
and temporal scales [3] such as those required for the 
flux assessment of a single city. Such uncertainty limits 
the effectiveness of comprehensive mitigation policies 
at global, regional and national levels. In the so-called 
“bottom-up” approach,  CO2 emissions from fossil fuel 
consumption are estimated based on socio-economic 
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databases [4]. Their accuracy depends on the reliability 
of information about the consumption of fossil fuels and 
industrial activities within the studied areas. Therefore, 
complementary independent assessment is desirable. 
International agreements to limit greenhouse gas emis-
sions require verification to ensure that they are effective 
and fair [5]. A concerted effort is needed to transform 
emerging scientific methods and technologies into an 
operational monitoring system to support urban carbon 
management decisions [6].

In situ measurements of atmospheric  CO2 concen-
tration contain information about upwind  CO2 surface 
sources. For a study in Indianapolis long horizontal tran-
sects were flown perpendicular to the wind downwind 
of the city [7]. Emissions were calculated using the wind 
speed and the difference between the concentration in 
the plume and the background concentration. The urban 
plume was clearly distinguishable in the downwind con-
centrations for most flights. Additionally, there was large 
variability in the measured day-to-day emissions fluxes 
as well as in the relative CH4 and  CO2 fluxes. Turnbull 
et  al. [8] collected in  situ measurements and flask sam-
ples in the boundary layer and free troposphere over Sac-
ramento, California, USA. The resulting emissions were 
uncertain to within a factor of two due to uncertainties in 
wind speed and boundary layer height. Newman et al. [9] 
used in  situ GHG, and planetary boundary layer height 
measurements recorded in Pasadena, California, USA, to 
deduce the diurnally varying anthropogenic component 
of observed  CO2 in the megacity of Los Angeles (LA). 
Turnbull et al. [10] used tower flask samples to examine 
how the choice of background and downwind sampling 
location can influence estimates of total  CO2,  CO2 from 
fossil fuels, and CO in the urban region of Indianapolis, 
USA. With background measurements directly upwind 
of the urban area the local urban emissions could be iso-
lated from other sources. The choice of downwind loca-
tion and sampling height is also important.

Measurements of atmospheric  CO2 concentrations and 
transport model simulations can be used for constrain-
ing the surface fluxes by the so-called top-down approach 
or inverse modelling. In the inverse approach, the atmos-
pheric transport model can be linearised and the trans-
port operator is inverted in order to relate emissions (e.g. 
anthropogenic) with a measured concentration. Regional 
(area ∼ 104 km2) assessments of fluxes using global mod-
els are hindered at small time and space scales due to 
transport models inability to represent  CO2 measure-
ments adjacent to large point sources [11]. Therefore, a 
higher resolution methodology is desirable [6], with grid 
cells in the range of ∼ 1 km2 [12]. Lagrangian-based tech-
niques are well suited for this application, and recent 
studies are increasingly addressing city-scale inversion 

problems. Nehrkorn et  al. [13] examined the utility of 
atmospheric observations and models for detecting 
trends in concentrated emissions from Salt Lake City, 
Utah, USA. They assessed the ability of different con-
figurations (land surface, planetary boundary layer, and 
subgrid convective transport) of the Stochastic Time-
Inverted Lagrangian Transport model (STILT) [14] to 
reproduce the observed local and mesoscale circulations 
and the diurnal evolution of the planetary boundary layer 
(PBL). They showed that for urban locations there is a 
clear benefit from parameterising the urban canopy for 
simulation of the PBL and near-surface conditions, par-
ticularly for temperature evolution at night. McKain et al. 
[15] tested a method for estimating scaling factors with 
observations from a network of  CO2 surface monitors in 
Salt Lake City. They demonstrate an observation-model 
framework capable of detecting a change in anthro-
pogenic  CO2 emissions of 15% or more from an urban 
region on a monthly basis. McKain et al. [15] also argue 
that integrated column measurements of the urban dome 
of  CO2 from the ground and/or space are less sensitive 
than surface point measurements to the redistribution of 
emitted  CO2 by small-scale processes and thus may allow 
for more precise trend detection of emissions from urban 
regions. Bréon et  al. [16] estimate the Paris area emis-
sions from measurements of atmospheric  CO2 mol frac-
tions and prior flux inventories. Their analysis is based on 
measurements from the autumn period because of the 
reduced interference with biogenic fluxes. More recent 
studies include Sargent et al. [17] and Babenhauserheide 
et al. [18].

In this study we estimate  CO2 flux constraints based on 
Lagrangian backward transport modeling and a Bayes-
ian inverse method. We present a case study of the Tokyo 
metropolis, the world’s largest megacity with nearly 40 
million inhabitants (for the whole megalopolis in the 
Kanto plain). Tokyo’s large territorial extent, high popula-
tion density and intense economic activity create a strong 
anthropogenic  CO2 signal. In addition, the fluxes were 
calculated for the winter months (December to March) 
when the biospheric activity within the area can be con-
sidered dormant and have a smaller impact on  CO2 mix-
ing ratios than anthropogenic activity [19]. The transport 
is modeled using ensembles of diffusive backward trajec-
tories [20] using Lagrangian particle dispersion models 
(FLEXPART, Stohl et  al. [21]; flexpart-wrf, de Foy et  al. 
[22], Brioude et al. [23]; TRACZILLA, Legras et al. [24], 
Pisso and Legras [25]). In order to assess the methodol-
ogy we repeated our calculations changing a number of 
input parameters. We used different configurations of 
the observational constraint, different estimates for the 
background concentrations, different transport operators 
(including different input wind fields and perturbations 
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thereof ) and different prior emissions derived from both 
the EDGAR and CDIAC inventories.

Results
We assessed  CO2 anthropogenic fluxes from the Tokyo 
Bay area with observation-based constraints. The top-
down estimates are based on a composite data set of 
 CO2 observations and a Bayesian inversion method-
ology. The measurements correspond to two ground 
sites (Dodaira and Kisai), a tall tower (Tsukuba) and a 
commercial flight measurement project (CONTRAIL). 
Night time observations are not used except in sensi-
tivity estimates in order to prevent model biases. The 
transport operator (source-receptor relationship, or 
SRR) is calculated using backward Lagrangian calcula-
tions based on ECMWF (European Center for Medium-
Range Weather Forecasts) winds. The background  CO2 
can be obtained from the measurements themselves 
(although alternative representations have been tested, 
see “Methods” section). The prior anthropogenic fluxes 
are based on the EDGAR and CDIAC  CO2 inventories. 
We fist present examples of the reference inversions 
and an analysis of the multi year set of measurements. 
A series of sensitivity tests have been carried out using 
different subsets of the measurements, perturbations 
to the transport operator and different background 
representations.

Emission flux inversion and simulated mixing ratio 
calculation
Figure 1 shows the result of the averaged inversions for all 
winters 2005–2009. The upper row left and centre pan-
els show respectively the prior and posterior fluxes. The 
constraints were calculated omitting night time observa-
tions from all platforms, observation-based background, 
ECMWF winds, the EDGAR anthropogenic prior fluxes 
and the error covariance matrices are described in 
“Methods: description of the data and numerical mod-
els” section. We calculated the posterior fluxes and pos-
terior flux uncertainties assuming Gaussian errors [26]. 
The upper right panel shows the space distribution of the 
difference between posterior and prior fluxes. The lower 
row presents the prior and posterior flux uncertainties 
estimated as the square root of the error variances (i.e. 
the square root of the diagonal of the error covariance 
matrices B and B0, see “Methods” section). The upper 
right panel shows the error reduction, a metric for the 
difference between prior and posterior uncertainty dis-
cussed in “Prior flux error covariance matrix” section.

Based on the daily averaged maps of optimised fluxes, 
we calculated various spatial averages of the prior and 
posterior fluxes. Figure  2 illustrates the space averaged 
flux values using different domains and grid masks. The 

masks used for the spatial averages are those shown in 
Additional file  1: Figure S1. Rural areas are defined for 
the purposes of these calculations as the land grid cells 
where typically the EDGAR anthropogenic fluxes are 
lower than the Vegetation Integrative SImulator for Trace 
gases (VISIT, [27]) biogenic fluxes. Urban areas are the 
complement of the rural areas over the land. Sea and land 
masks are defined to be consistent with WRF output at a 
10 km horizontal resolution. We have included the spa-
tial averages taken over three additional masks for com-
parison. The lower left panel shows the averages taken 
daily on the grid cells where the EDGAR flux is higher 
than 1 mg  CO2 m−2  s−1. The lower central panel where 
the EDGAR fluxes are higher than 0.01 mg  CO2 m−2 s−1. 
The lower right panel shows the average over the whole 
grid in the inner nest centred in Tokyo used for the inver-
sion (138° E to 141° E and 34° N to 37° N). In general the 
posterior averages are larger than the priors.

The averaged density and the total flux integrated in the 
regions defined above (and Additional file  1: Figure S1) 
for the whole period 2005–2009 are shown in Tables  1 
and 2.

Moriwaki and Kanda [28] obtained averaged flux values 
in winter of 0.25 mg  CO2 m−2 s−1 (range between 0.2 and 
1.1 mg CO2 m−2 s−1) based on direct micrometeorologi-
cal measurements made from May 2001 to April 2002 in 
a low-storied residential area in Kugahara, Tokyo, Japan 
(35.5667 N, 139.6833 E). These measured flux values pro-
vide a range of a priori fluxes in mixed urban areas in 
Tokyo during the period under consideration. The flux 
values obtained here interpolated in the area where these 
experiments took place are consistent with this estimate, 
although the comparisons being made between point-
wise measurements and a large area inversion. Our esti-
mates are strongly affected by the a priori baseline and 
other factors as further explained below.

Figure  3 shows the observed  CO2 values compared 
with the prior and posterior forward models for January 
2007. The measurements for January 2007 were sepa-
rated into six time series corresponding to the stations at 
Kisai (13 m.a.s.l.) and Mt. Dodaira (840 m.a.s.l.), the three 
levels of the Tsukuba tower (base at 33 m.a.s.l., inlets at 
25, 100, and 200 m above ground level) and the compos-
ite of the CONTRAIL data (variable heights from ~ 500 
to 2000 m.a.s.l).

Hourly averaged data is used for Kisai, Dodaira and 
Tsukuba. We avoid using the nighttime data due to lack 
of confidence in nocturnal simulations. CONTRAIL 
measurements are carried out continuously. The bot-
tom altitudes of the ascents and descents, near the 
Narita runways, are removed from the analyses to pre-
vent highly localized contamination. Observations from 
layer of high values above the Narita airport was also 
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removed. CONTRAIL commercial flights take place daily 
(see Additional file  2: Figure S2 and Additional file  3: 
Figure S3 for the vertical distribution and the hourly 
distribution within the day). The  CO2 values for the 
measurements are compared with the source–receptor 
relationship used as forward model applied to both prior 
and posterior fluxes. It can be seen from Fig. 3 that the 
model performs consistently better with the posterior 
fluxes than with the prior in every time series. For a more 
quantitative assessment we have calculated the correla-
tion coefficients together with their significance p-values 

for the individual time series and for the full data com-
posite. The results are displayed in Table 3. All p values 
indicate an acceptable level of significance for the corre-
lations displayed in the table. The inversion calculation 
improves the correlations for all measurement time series 
individually. Taken as a whole, the correlation coefficient 
improves from 0.18 to 0.6. However, the model does not 
always capture the highest peaks. In these extreme cases, 
the errors in the modelled mole fractions can be of the 
order of magnitude of the signals.
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Fig. 1 Prior and posterior fluxes averaged for the whole period with the corresponding averaged flux uncertainties. The upper row shows the 
monthly mean per each grid cell for prior flux (left), posterior flux (center) and its difference (right). The lower row shows the monthly mean per 
each grid cell for prior uncertainty (left), posterior uncertainty (center) and the error reduction (right). The error reduction is calculated daily and 
averaged monthly. All averages were calculated from daily retrievals for the period 2005–2009
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Sensitivity to different inversion system parameters
The inversion results depend on the parameters for the 
different components of the system. These parameters 
include the choice of the subset of measurements, the 
background concentrations assumed in the individual 
observations time and locations, the random errors and 
biases in the transport models, and the a priori fluxes. 
The month of January 2007 was chosen because it is the 
one for which all tested options are available: aircraft, 
tower and ground observations, AGCM simulations for 
the background and WRF simulations for the transport. 
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Fig. 2 Time series of spatially averaged fluxes for 2005–2009. Upper row: rural, urban and sea domains. Lower row: areas corresponding to EDGAR 
grid cells with flux higher than 1 mg  CO2 m2 s−1 (left panel) and 0.01 mg  CO2 m2 s−1 (center panel) and inner domain. The masks are those shown in 
Additional file 1: Figure S1. The black lines represent the posterior fluxes. The grey shaded area represents 1-sigma for the posterior uncertainty. The 
red solid and dashed lines correspond to the mean flux and 1-sigma uncertainty for the prior

Table 1 Total flux time and  space averages for  the  whole 
period 2005–2009

All values are in Mt  CO2 y−1 integrated in the area defined by the mask

Prior 
flux

Posterior 
flux

Prior 
uncert

Posterior 
uncert

Rural 34 50 17 16

Urban 411 554 205 161

Sea 9 9 < 1 < 1

≥ 1 mg m−2 s−1 276 291 138 105

≥ 0.01 mg m−2 s−1 453 612 222 178

All grid 455 612 224 179
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Not every flux inversion from the perturbations pro-
vides a necessarily realistic estimate of the emissions, 
but the results in this section should be interpreted as 
sensitivity experiments for future model calibration and 
comparison.

Sensitivity to measurement amount and location
The use of different subsets of the data yields different 
flux estimates. We studied the impact of CONTRAIL 
data on the geometry of retrieved fluxes. Figure  4a 
shows the difference between the retrievals using all data 
including CONTRAIL with respect to the results based 
on ground observations only. In the most urbanised 
region of Tokyo the difference is up to 21% higher using 
all data measurements including CONTRAIL. The dif-
ference is larger in the central areas where the fluxes are 
larger. Table  4 shows the impact on the total integrated 
emissions in the urban area with respect to the reference 
inversion. For the urban area grid is 13%. This illustrates 
to what extent the availability of data has a large impact 
on flux inversion results. Figure 4b shows the evolution 
in time of fluxes calculated without the CONTRAIL data 
with night time removed. The largest difference appears 
in the middle of the interval studied.

Sensitivity to background concentration representation
The regional inversion system needs initial and bound-
ary conditions. The background  CO2 concentration can 
be defined as the fraction already present in the atmos-
phere before the emissions take place. It is a defining 
parameter in any inversion methodology as it deter-
mines the increase ΔCO2 that is the input of the inver-
sion operator. Different background estimates yield 
different flux constraints. Bias in the background trans-
lates into a flux estimate error as different background 
estimates yield different observational constraints on 

the fluxes. Several papers have discussed the definition 
and the impact of erroneous boundary conditions in 
regional inversions [29, 30]. The estimate of the back-
ground for the reference simulations can be obtained 
directly from the data, by taking the daily minimum for 
each ground site or using the free troposphere observa-
tions of CONTRAIL. We tested in addition two other 
different approaches: using the simple hemispheric 
seasonal baseline from a clean air station and a global 
Eulerian model together with ensembles of backward 
diffusive trajectories. Using Lagrangian transport, the 
definition of background mixing ratio values depends 
on the time and space scales under consideration (i.e. 
how far back the trajectory ensembles are followed) 
in the presence of emissions. In the case of Tokyo the 
basis background is related to the seasonally averaged 
values in the Northern Hemisphere. For the rather 
usual westerly wind conditions, influx from continental 
Asia could be non negligible. But as shown by Tohjima 
et al. [19, Figs. 3 and 8] from both Lagrangian and Eule-
rian transport representation, the North-East Asian 
plume has a relatively little impact on Japan in gen-
eral and on the Tokyo Bay Area in particular. Figure 5 
shows the difference between the reference inversion 
and the inversion done using the clean air site as back-
ground. The difference in the retrieved flux is negative 
throughout the domain: as the clean air site has lower 
concentrations, the inversion assigns larger fluxes to 
the domain. The flux retrievals are listed in Table 4. The 
perturbed calculations for January 2007 include chang-
ing the observation-derived background for that from 
the clean air site (ML) and from AGCM (interpolated 
and together with EDBTs). In addition, we have calcu-
lated the flux resulting from perturbations (offsets) to 
the different backgrounds of 2 ppm in either direction. 
Not in all cases the global model output is better than 
the clean side observations (e.g. Mauna Loa) for back-
ground estimates in regional  CO2 flux inversion. This 
depends on the calibration of the background of the 
global model itself: ML + 2 ppm is closer to the refer-
ence than AGCM-BDE − 2  ppm. However, if the bias 
in the background level can be removed, other sources 
of uncertainty (such as those arising from transport) 
could have larger effect on the results than the back-
ground bias.

Sensitivity to transport model errors and biases
The calculations are sensitive to transport errors that can 
occur in space and time. We have investigated the impact 
of biases in the winds on the estimated fluxes. The biases 
can be represented as changes in the transport operator 
by perturbing the linear source–receptor relationship. 
The perturbed runs use a simple shift of the SRR in order 

Table 2 Flux density time and space averages for the whole 
period 2005–2009

All values are in micro-mol  CO2 m−2 s−1 commonly adopted for  CO2 fluxes 
in the eddy covariance community (1 micro-mol  CO2 = 0.044 mg CO2, the 
corresponding Additional file 6: Table S1 in mg  CO2 m−2 s−1 can be found). 
Space averages are taken in the area defined by the mask

Prior 
flux

Posterior 
flux

Prior 
uncert

Posterior 
uncert

Rural 0.82 1.22 0.41 0.41

Urban 14.47 19.46 7.23 5.67

Sea 0.19 0.19 0.02 0.02

≥ 1 mg m−2 s−1 38.84 40.93 19.42 14.80

≥ 0.01 mg m−2 s−1 6.23 8.41 3.06 2.44

All grid 3.82 5.16 1.88 1.50
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to simulate errors in time (columns) and in space (rows). 
A shifting of the columns of the SRR to the right (left) 
displaces in the spatial footprint pattern to the east (west) 
(but causes no change in time if the SRR is calculated for 
e.g. static fluxes). A shifting the rows downward (upward) 
causes a delay (advance) in the transport time but little 
change in the spatial footprint pattern. We retrieved the 
fluxes with the SRR shifted by 1 and 2 rows and columns 
keeping otherwise the same parameters of the reference 

inversion. The resulting retrieved flux differences can be 
found in Table 4. A space shift of one and two columns 
(20 and 40 km) causes a difference in the retrieved fluxes 
of 21% and 32% respectively. A time shift of one and two 
rows (~ hours) cause a difference of 13% and 17% respec-
tively. Figure  6 shows the difference of the average flux 
for the whole period 2005–2009 between the inversions 
carried out with the SRR shifted two columns to the right 
(shift [0 2]) with respect to shifting two columns to the 
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Fig. 3 Comparison of the  CO2 values for the measurements and the forward model based on prior and posterior fluxes for a reference monthly 
inversion (January 2007). The time series correspond Kisai (13 m.a.s.l.) and Mt. Dodaira (840 m.a.s.l.), the three levels of the Tsukuba tower (base at 
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left (shift [0 − 2]). It is apparent that the flux pattern is 
displaced to the North East.

In order to compare the effect of different meteorolo-
gies, we performed the reference calculation using flex-
part-wrf calculated SRRs instead of the default ECMWF. 
The integrated difference on the residence times in the 
SRRs ranged between 10 and 15% (“Methods: descrip-
tion of the data and numerical models” section, Addi-
tional file  4: Figure S4). Nevertheless the impact on the 
retrieved flux can be higher, up to 23% for the 1  day in 
January 2007. The change in meteorology could act in a 
similar way as the shift: displacing the sensitivity to adja-
cent cells. If the highest sensitivity is associated with a 
cell that contains a very low prior flux, the retrieval could 
need to assign a very large increase to such a cell in order 
to satisfy the constraint.

Sensitivity to the prior flux inventory
The key ingredient regularising the inversions are the 
prior fluxes. We carried out large perturbations to the a 
priori EDGAR emission inventories (2× and 3×). When 
2×EDGAR and 3×EDGAR were adopted for the a priori 
emissions, the atmospheric inversion resulted in a differ-
ence of 6% and 9% with respect to the reference respec-
tively. In addition we retrieved the flux with the CDIAC 
inventory. The prior is much lower that that of EDGAR 
(11 vs. 34  Mt  month−1). However, the resulting poste-
rior integrated flux en the urban areas is 33 Mt month−1 
showing that the observations provide and effective 

constraint for the fluxes. We carried out sensitivity tests 
in order to estimate the impact of neglecting the bio-
genic fluxes. We used biogenic priors based on CASA 
and VISIT (see “Methods: description of the data and 
numerical models” section). In both cases the difference 
with respect to the reference inversion was around 2%. In 
the Tokyo Bay Area during the period of this study, the 
biogenic fluxes (below 0.1  mg  m−2  s−1) represent just a 
small fraction of the anthropogenic emissions (up to 
3 mg m−2 s−1). Therefore their impact on the final inver-
sion result during the period of this study is modest with 
respect to that of the anthropogenic fluxes.

Discussion
The main limitations of our approach are the treatment 
of the background and the transport uncertainties. Other 
limitations include the sparse distribution of measure-
ments and limited availability of meteorological flux 
measurements for direct flux comparison. However, the 
simplified settings chosen for this study allow the evalua-
tion of several aspects of the methodology. This yields in 
turn an elementary characterisation of potential avenues 
for improvement. The combination of several different 
transport models with in situ measurements from differ-
ent inhomogeneous data streams including from com-
mercial aircraft is especially promising.

Transport uncertainties: Meteorological winds are pro-
vided by different models (ECMWF and WRF) seem to 
agree with errors in the SRR of the order of 10–15% in 
certain experiments. The retrieval process can increase 
this error in an additional 5–10% akin to a shift pertur-
bation to the SRR. Even if their meteorological winds are 
provided by different centres (NCEP and ECMWF), the 
data on which these are based (e.g. satellite radiances for 
the assimilation processes) are not independent. Hence, 
there could be biases in the general weather patterns due 
to the erroneous model representation of weather sys-
tems, fronts and other large-scale atmospheric transport 
structures. On a smaller scale there could be biases intro-
duced by the limited grid cell resolution. The sources of 
error related to transport include the impact of the PBL 
parametrisation. The construction of the source–recep-
tor relationship involves the translation of 2-D flux densi-
ties to 3-D mixing ratios or concentrations. The SRR can 
be interpreted as a discrete version of the Green’s func-
tion for the transport-diffusion equation. The Green’s 

Table 3 Observed  CO2 concentrations compared 
with  prior and  posterior model results: correlation 
coefficients and  corresponding p-values for  the  reference 
inversion in January 2007

Corrcoef 
prior

p (significance) 
prior

Corrcoef 
posterior

p (significance) 
posterior

Kisai 0.09 0.14 0.48 < 0.01

Dodaira 0.02 0.65 0.73 < 0.01

Tsukuba 1 0.02 0.61 0.54 < 0.01

Tsukuba 2 − 0.06 0.16 0.41 < 0.01

Tsukuba 3 − 0.07 0.10 0.29 < 0.01

CONTRAIL 0.34 < 0.01 0.58 < 0.01

All data 0.18 < 0.01 0.60 < 0.01

Fig. 4 Impact of CONTRAIL. a Time series of averaged fluxes with the masks described in the Additional file 1: Figure S1 of the retrieval obtained 
omitting the CONTRAIL data. b Spatial distribution of the difference between the retrievals obtained with all the observation and the retrievals 
obtained with CONTRAIL removed averaged for the whole period 2005–2009

(See figure on next page.)
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function method provides solutions for the transport-
diffusion equation with arbitrary initial/boundary con-
ditions as the sum of single impulse-response solutions 
(i.e. Dirac’s delta functions, that are here analogous to 
ensembles of Lagrangian trajectories). The discretisation 
for the Green’s function method is best suited to repre-
sent probability transitions between regions of the same 
dimension (i.e. 3-D to 3-D). Although a rigorous formu-
lation exists for the consideration of 2D boundary fluxes 
for mixed Neumann–Dirichlet boundary conditions [31, 
32], it is not well suited for numerical computations. This 
is because such a formulation requires the calculation 

Table 4 Perturbation tests for January 2007

The changes are in the observations amount and location, perturbations in 
transport modelling, different background representations and inventory 
perturbations. The baseline inversions used as control correspond to 
all observations night time excluded, ECMWF winds with no SRR shift, 
observations-derived background and EDGAR inventory

Experiment 
description

Kanto urban emissions 
Mt/month (all period 
average)

Relative difference 
with respect 
to reference

Prior (EDGAR) 34 − 26%

Reference inversion 46 0%

Changes in observations amount and location

 No CONTRAIL 40 − 13%

 Including night 
observations

41 − 11%

Perturbations in transport modelling

 Space shift 1 grid cell 
[0 1]

56 21%

 Space shift 2 grid 
cells [0 2]

61 32%

 Time shift 1 h [1 0] 52 13%

 Time shift 2 h [2 0] 54 17%

 WRF meteorology 57 23%

Different background representations

 Mauna Loa (ML) 71 54%

 ML + 2 ppm 58 26%

 ML − 2 ppm 84 82%

 AGCM-BDE (i.e. with 
backward diffusive 
ensembles)

53 15%

 AGCM-BDE + 2 ppm 40 − 13%

 AGCM-BDE − 2 ppm 67 45%

Inventory

 2× EDGAR 49 7%

 3× EDGAR 50 9%

 CDIAC 33 (from prior 11) − 28% (+ 300% 
from prior)

 EDGAR + VISIT 47 2%

 EDGAR + CASA 47 2%

Reference inversion minus Mauna Loa background 

138 138.5 139 139.5 140 140.5
34
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35

35.5

36

36.5

-2 -1 0 1 2
mg m-2 s-1

Fig. 5 Impact of the background on the retrievals: difference of the 
average flux for the whole period 2005–2009 between the reference 
inversion and the inversion using the Mauna Loa interpolated data as 
background

Shift [0 2] - Shift [0 -2]
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Fig. 6 Transport uncertainty: difference of the average flux for the 
whole period 2005–2009 between the inversion carried out with the 
SRR shifted two columns to the right (shift [0 2]) minus the inversion 
carried out with the SRR shifted two columns to the left (shift [0 − 2])
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of the Green’s function gradient at the boundary of the 
domain, which can result in a large error. Instead, an 
additional step is usually performed for the parameteri-
sation of the mixing within PBL. In this study we have 
used a mixing height consistent with the 3-D transport 
model used for advection (ECMWF or WRF). The use of 
measurements to constrain PBL height is limited by the 
spatial distribution required within the inversion area. 
For the present case, suitable measurements to follow 
this approach are not available. The discrepancy between 
the model resolution and the real scale of the physical 
processes may be responsible for representation errors. 
Given the small scale required for city size flux estima-
tions, inadequate spatial and time resolution can result 
in errors in the transport model. The compliance with a 
Courant–Friedrichs–Lewy type condition therefore is 
required: i.e. the particles must be sampled in an inter-
val shorter than the time for the trajectories to travel to 
adjacent grid points cells. For example, if wind speed 
is lower than of 20  km  h−1, and the horizontal grid is 
20 km, then the required time step for the output of tra-
jectories would be 1 h. This is in the range of the trans-
port timescale between the sites of Kisai or Narita and 
the center of Tokyo. We have performed detailed com-
parisons between our SRR calculations and the standard 
FLEXPART output based on a 15-min advection time 
step and a turbulent perturbation time step of 18 s. The 
difference found was lower than 5%, which is small con-
sidering the other sources of error. We conclude that 
hourly footprints are sufficient and wouldnot introduce 
significant biases in this case. Although we attempted to 
assess the impact of the biases in the transport modeling, 
there is much space for improvement. Nehrkorn et  al. 
[13] reports that simulation of near-surface  CO2 con-
centrations for a 2-week period in October 2006 showed 
that running WRF at high resolution (1.33 km) and with 
an urban canopy model improves the simulation of  CO2. 
Future runs with improved mesoscale model parametri-
sation are expected to yield more accurate results. As the 
aircraft crosses the top of the boundary layer, airborne 
observations are sensitive to errors in the representation 
of vertical mixing in the transition. The CONTRAIL data 
could be converted into vertically integrated atmospheric 
column amounts  (XCO2) and adopted within the inver-
sion. Using  XCO2 could help reduce sensitivity to model 
errors, and will be explored in future work.

Background mixing ratios are a key element and poorly 
constrained in the current study. In out case, the use of 
a background that takes into account mainland Asian 
continental emissions yields an estimate that is lower 
than EDGAR inventory in the most urbanised areas (the 
centre of Tokyo where EDGAR emissions are higher 
than 1 mg  CO2 m−2 s−1). In contrast, the use of a clean 

air site as background leads to the conclusion that the 
inventories underestimate the fluxes. In agreement with 
Turnbull et al. [10], in this case it is most likely that the 
measured increase in  CO2 in not only originated from 
TBA emissions but that the enhancement in  CO2 is from 
both TBA emissions with some from surrounding areas. 
Previous studies have signalled the uncertainties associ-
ated with the background. For Indianapolis in winter, 
total  CO2 enhancements relative to the background from 
the surrounding rural land are almost entirely due to fos-
sil fuel  CO2  (CO2ff) so that  CO2 enhancement can be 
used as a proxy for  CO2ff. In contrast, when a free tropo-
spheric or continental clean air background site is used, 
 CO2ff contributes only about half of the  CO2 enhance-
ment downwind of Indianapolis [10], see also Lauvaux 
et  al. [33]. Thus, raw  CO2 enhancement will frequently 
not be a good proxy for  CO2ff when a continental back-
ground is used. Bréon et al. [16] reports that the bound-
ary concentration for Paris is underestimated when wind 
comes from North west (The Benelux). In Los Angeles, 
local fossil fuel combustion contributed up to 50% of the 
observed  CO2 enhancement overnight, and 100% of the 
enhancement near midday [9].

We have found that even using used in addition of air-
craft data a combination of ground in situ measurements 
and tower data the amount and distribution of input meas-
urement data has a large impact on the results of the inver-
sions. Mays et al. [7] underline the uncertainty arising from 
inadequate spatial sampling. Turnbull et al. [10] observes 
that when measurements are made too far downwind, 
both plume dispersion and the relatively small proportion 
of the time that the location samples the plume reduce the 
detectability of the urban signal. On the other hand, the 
Salt Lake City case [15] suggests that increasing the num-
ber of surface measurement stations across the city would 
be ineffective at substantially improving the observational 
approach for detecting a change in emissions. Simulations 
in that case indicate that individual observation sites are 
sensitive to emissions across the full urban region. Turner 
et al. [34] discuss tradeoffs between measurement density 
and flux accuracy. The airborne measurements provide 
additional information to assess such a flux variability that 
may be missed using only ground or tower data. Several 
studies have used aircraft data. Our analysis add to those 
of Mays et al. [7] in Indianapolis and Turnbull et al. [8] in 
Sacramento confirming the utility of aircraft based plat-
forms. Mays et al. [7] found that the downwind concentra-
tion values clearly show the urban plume in each case, and 
that the plume concentrations are well above the uncer-
tainty in the background concentrations. The CONTRAIL 
flights were borne on commercial airliners, so we lack spe-
cific upwind and downwind transects. From the technical 
point of view, we developed a system that merges aircraft 
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data together with ground in situ measurements and tower 
data.

The scarcity of the measurements limits the assessment 
of the spatiotemporal variability. Mays et al. [7] indicate 
significant variability in the fluxes of  CO2 from Indian-
apolis. Comparison with measurements of the forward 
model (Fig.  3) has been carried out as in the study of 
Bréon et al. [16]. As in their case, the errors in the mod-
elled mole fractions can be of the order of that of the sig-
nals for the largest peaks (see “Results” section).

For heavily vegetated cities, it is necessary to distin-
guish anthropogenic from biogenic emissions, possibly 
with tracer measurements of fossil fuel combustion (e.g. 

CO, 14C) [15]. The region surrounding Indianapolis has 
a strong seasonal biogenic  CO2 cycle, with a dormant 
biosphere in winter and strong biospheric exchange in 
summer [10]. The analysis of Bréon et al. [16] is based 
on measurements from the autumn period. It helps the 
inversion of fossil fuel emissions because of the reduced 
interference with biogenic fluxes. Ye et al. [35] studied 
biospheric  CO2 contributions on urban inversions with 
Observing System Simulation Experiments and NASA’s 
Orbiting Carbon Observatory 2 (OCO-2) observations. 
In the case of Tokyo in winter the impact of vegetation 
is overwhelmed by large anthropogenic emissions. The 
comparison may be relevant because as in the case of 
Paris, Tokyo is densely populated and the emissions are 
intense over a limited surface. Available direct micro-
meteorological measurements during the same sea-
son [28] are consistent with the values presented here, 
although the comparison can be made only in limited 
interpolated locations.

In any Bayesian methodology [36, 37], the choice of 
the anthropogenic flux inventory influences the pos-
terior estimate. The resolution of the inventories used 
in this study was chosen to be coarse in order to test 
the methodology. In the future we will use improved 
inventories such as FFDAS [38] and ODIAC [39]. As 
in the study of Bréon et  al. [16] the prior estimate of 
 CO2 doesn’t account for human respiration. Improved 
assessments of large city  CO2 fluxes can benefit from 
the combination of in  situ measurements, inventory 
optimisation and the use of remote sensing such as sat-
ellite column integrated measurements.

Figure 7 shows a comparison with literature estimates 
of Tokyo  CO2 emissions in units of millions of metric 
tons of  CO2 per year (MMT  CO2  y−1 or Mt  y−1). The 
area for Tokyo city is 1808 km2 that is the continental 
Tokyo prefecture (Tokyo-tō). The definition of the Met-
ropolitan area is 13,555  km2, that of the city of Tokyo 
plus the three surrounding prefectures (Ittō-sanken). 
The fluxes of Moriwaki and Kanda [28] were extrapo-
lated based in their range for winter. The Tokyo gov-
ernment estimates are the average for the years of this 
study.

Conclusions
In this study we assessed an inversion methodology for 
the anthropogenic  CO2 emissions of the Tokyo Bay area. 
In the past, studies had been focused on smaller areas. 
Recently, larger area cities have been assessed in the 
context of a coordinated pilot project for the megacities 
of Los Angeles, Paris and São Paulo. This independent 
study attempted to address the  CO2 flux inversion in the 
urban area of Tokyo assessing the related uncertainties. 

Fig. 7 Comparison with literature estimates of Tokyo  CO2 emissions 
in units of millions of metric tons of  CO2 per year (MMT  CO2 y−1 or 
Mt y−1). See also Table 5. M & K: Moriwaki and Kanda [28], Kankyo: 
Tokyo government, mean 2005–2009, EDGAR and CDIAC for the 
year 2005, Baben.: Babenhauserheide et al. (in review), This work: 
uncertainties from “Sensitivity to measurement amount and location” 
and “Sensitivity to background concentration representation” 
sections. See also [40]. Hypothetical background perturbations not 
considered for uncertainty estimates. When inventories are provided 
without uncertainties, error ranges are not included

Table 5 Comparison with literature estimates of Tokyo  CO2 
emissions in units of millions of metric tons of  CO2 per year 
(MMT  CO2 y−1 or Mt y−1). See also Fig. 7

Tokyo city Metropolitan area

Moriwaki and Kanda [28] 11–62 Mt y−1 85–470 Mt y−1

Tokyo government (Kankyo, 
mean 2005–2009)

61 Mt y−1 N/A

EDGAR 76 Mt y−1 420 Mt y−1

CDIAC 34 Mt y−1 130 Mt y−1

Babenhauserheide (in review) N/A 315 ± 121 Mt y−1

This work [40] 80 Mt  y−1 554 Mt y−1
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We applied a Bayesian inversion technique combin-
ing Lagrangian particle dispersion model in backward 
mode with a composite of  CO2 measurements including 
ground sites, tall tower and aircraft data. We examined 
the impact on our results of using different parameters 
carrying out sensitivity tests. We compared the result-
ing flux estimates using only sparse surface  CO2 data 
vs. including aircraft (CONTRAIL) observations. We 
used different estimates of the background concentra-
tions (from the data, a clean air station, the ACTM global 
model and diffusive backward reconstructions with 
TRACZILLA). We tested different simulated transport 
biases and used different wind data to drive the transport 
models (FLEXPART, flexpart-wrf ). All of these factors 
are shown to cause significant differences in the esti-
mated flux. This highlights the challenges in estimating 
regional  CO2 fluxes.

Our key results can be summarised as follows:

• The constraints on the spatial distributions obtained 
using all data including CONTRAIL aircraft data 
with respect to inversions calculated using ground 
sites only differ significantly. Differences in inverted 
fluxes for the whole region amounted to 13% on aver-
age and up to 21% in the highest flux cells adding air-
craft data from the CONTRAIL dataset.

• Errors in the modelled meteorological transport 
largely affect the flux estimates. Among the tested 
case studies, the impact of using different meteorolo-
gies (23% on fluxes from 10 to 15% in the residence 
times) is comparable to shifting in the transport pat-
terns of between 20 and 40 km (21% and 32% respec-
tively).

• Assumed background concentrations impact the 
results and must be assessed. Background concen-
trations impacts were determined by the linearised 
transport operator. Replacing the background 
obtained directly from the observations for those cal-
culated form a clean air station and a global Eulerian 
model (AGCM) amounted to differences of 54% and 
15 respectively.

• Replacing the EDGAR inventory with CDIAC 
yielded emissions 28% lower. Using 2×EDGAR and 
3×EDGAR yielded emissions 7% and 9% higher. 
These values were obtained with diagonal terms of 
the observation error covariance matrix correspond-
ing to 1-sigma values of the order on 1  ppmv and 
diagonal terms of the prior error covariance matrix 
corresponding to 1-sigma values of the order of 
100%. If the observational constraint is reduced by 
including the advection error in the diagonal terms of 
the observation error covariance matrix the retrieved 
fluxes are much closer to the priors.

• Our estimates of total emissions for the years stud-
ied are on average of 80 Mt CO2 for the city of Tokyo 
(continental Tokyo-tō) and 554 Mt y−1 for the whole 
Kanto region.

Methods: description of the data and numerical 
models
Description of the urban area selected for the study
The Tokyo Bay Area (TBA) is located in the Kanto 
region of Japan, which includes and surrounds the 
Greater Tokyo Area and encompasses seven prefec-
tures: Gunma, Tochigi, Ibaraki, Saitama, Tokyo, Chiba, 
and Kanagawa. The region has varied topography and 
a complex coastline in the East. Within its boundaries, 
slightly more than 45% of the land area is the Kanto 
Plain. The rest consists of the hills and mountains that 
form the land borders. It is a highly developed area 
with a significant industrial activity and a complex 
transportation network. The population was about 
42 million inhabitants according to an official cen-
sus count on October 1, 2010 by the Japan Statistics 
Bureau. This corresponds to approximately one-third 
of the total population of Japan. The anthropogenic 
 CO2 emissions from Tokyo are both large and distrib-
uted over an extensive area. The anthropogenic signal 
is substantially higher than the background and bio-
genic sources within the most urbanised area, espe-
cially during the winter months. The availability and 
quality of data from the TBA, the largest urban area in 
the world, makes it suitable for benchmarking inver-
sion methodologies.

Measurements:  CO2 mixing ratios measured in commercial 
aircraft, tower and surface stations
We have selected a set of measurements taken during the 
winter months for the years 2005 to 2009 for analysis. 
Figure 8 shows the spatial distribution of data used within 
the region. We have combined  CO2 data from ground 
stations, a tall tower and in  situ aircraft measurements 
covering the Tokyo Bay Area (Fig.  9). The total number 
of data points used in this work is 176,414. In situ high-
resolution measurements being used include:

 (i) Tsukuba tall tower measured  CO2 mixing ratio 
in sampled air from inlets located at 25, 100, and 
200  m. Introduced by the diaphragm pump to a 
nondispersive infrared sensor (NDIR) in the exper-
imental field building [41, 42]. The mixing ratio 
standard used for calibration of the instrument was 
MRI-87 scale, described by Inoue and Matsueda 
[41]. The difference of MRI-87 standard and the 
World Meteorological Organisation (WMO) mole-
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fraction is less than 0.2 ppm for the ambient  CO2 
level, although it depends on the mixing ratios [43]. 
Tsukuba tall tower data were used hourly averaged 
for the whole year 2007. The Tsukuba tower was 
demolished and is no longer available.

 (ii) The Comprehensive Observation Network for TRace 
gases by AIrLiner (CONTRAIL) project [44] pro-
vided the aircraft  CO2 measurements. The project 
started in 2005 with two Boeing 747-400 aircraft and 
three 777-200ER aircraft operated by Japan Airlines 
(JAL) between Japan and Europe, Asia, Australia, 
Hawaii and North America. Further 777-200ER 
and 777-300ER aircraft were subsequently added. 
Samples were collected with the Continuous  CO2 
Measuring Equipment (CME) on board five different 
Japan Airlines (JAL) passenger aircraft during regular 
flights.  CO2 measurements in the area of the Narita 
airport are used in this study during the ascending 
and descending parts of the flights (10  s averages). 
The measurements are reported in NIES-95 standard 
scale. Data are spans from mid 2005 to 2009.

 (iii) Atmospheric  CO2 hourly mixing ratio data from 
Mt. Dodaira and Kisai were obtained hourly aver-
aged from the World Data Center for Greenhouse 
Gases (WDCGG) hosted by the Japan Meteoro-
logical Agency, Tokyo (Available at http://gaw.
kisho u.go.jp). A VIA-510R non-dispersive infra-
red absorption (NDIR) system is used at both sites 
[45]. The absolute scales of these measurements 
are WMO mole fraction scale and are calibrated by 
JMA secondary gas (reference gas: 390, 410, 430, 
450 and span gas 380) the accuracy is 0.1 ppmv and 
the calibration frequency 2 h. The sites of WDCGG 
provide a continuous record of data; we chose data 
from 2005 to 2009 for this analysis.

There are therefore six simultaneous time series of 
measurements: Dodaira, Kisai, the three levels of the 
Tsukuba tower and CONTRAIL. We developed a work-
flow in order to combine data from different origins 
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Fig. 8 Sampling location for the measurements used in this study and main  CO2 sources. The blue dots represent the geographical distribution of 
the CONTRAIL data. The location of the stations of Kisai (13 m.a.s.l.) and Mt. Dodaira (840 m.a.s.l.), the Narita airport (43 m.a.s.l.) base for CONTRAIL 
flights (observations from ~ 500 m.a.s.l to 2000 m.a.s.l and the Tsukuba tower (base at 33 m.a.s.l., inlets at 25, 100, and 200 m above ground level) are 
represented by the black, green, blue and red dots respectively. The red squares represent the location of the major power plants

http://gaw.kishou.go.jp
http://gaw.kishou.go.jp
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into a format that can be flexibly ingested by the model. 
Additional file 2: Figure S2 shows the number of data as a 
function of height.

Data were used as provided by the data generator. In the 
case of the two ground stations and the Tsukuba tower, 
the data provided was hourly averaged. CONTRAIL data 
was provided averaged every 10 s (see Additional file 6). 
Averaging CONTRAIL data hourly would result in the 
receptors becoming a long transect. As the cruise speed 
of the aircraft is ~ 900 km h−1, at 10 s time resolution, a 
typical distance between data points along the flight path 
is about 2.5 km, which is large compared to the fixed posi-
tions of the ground stations and the tower. The spatiotem-
poral scales covered are equivalent for a wind magnitude 

at the ground stations of about 2.5  km  h−1 (0.7  m  s−1), 
which lies within the normal range.

Atmospheric composition and transport modeling
Lagrangian trajectories and particle dispersion models
We used two global scale Lagrangian trajectory codes: 
FLEXPART version 8.1 [21] and TRACZILLA [20, 24]. 
TRACZILLA is a FLEXPART branch derived from ver-
sion 5 of FLEXPART. It was originally developed for large 
scale applications focussed on the Lagrangian trajectories 
themselves rather than with the gridded output as the 
main FLEXPART version. The method of Ensembles of 
Lagrangian Backward Trajectories was developed using 
TRACZILLA. It was used here to investigate the impact 

Fig. 9 Values of the available  CO2 measurements used for this study. The time series correspond to the stations at Kisai (13 m.a.s.l.) and Mt. Dodaira 
(840 m.a.s.l.), the three levels of the Tsukuba tower (base at 33 m.a.s.l., inlets at 25 m, 100 m and 200 m above ground level) and the composite of the 
CONTRAIL data (variable heights from ~ 500 m.a.s.l to 2000 m.a.s.l)
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of the background calculation in the inversion results. 
Regional scale modeling was performed using FLEX-
PART-WRF [22] driven by the regional model WRF-CO2 
[46, 47], based on WRF (Weather Research and Forecast-
ing, [48]). Different meteorological advection fields have 
been used in this study. TRACZILLA and FLEXPART 
8.1 are driven by ERA Interim (EI) global ECMWF rea-
nalysis [49] at 1° × 1° spatial resolution (T255L spectral 
truncation) and 3 hourly time resolution. The Eulerian 
mesoscale model WRF-CO2 that drives FLEXPART-
WRF was configured with two nested domains. The outer 
domain covers East Asia with 27  km grid spacing. The 
map projection used for the model domain was Lambert 
Conformal with 165 × 132 grid cells. The inner domain 
has a spatial resolution of 10 km and is centered at (35 N, 
133 E), which is near Tokyo (Additional file 5: Figure S5). 
The model has 30 vertical layers up to 100  hPa, and 11 
layers are located within 2  km above the ground level. 
The time resolution of the WRF runs was 1 h.

The transport and mixing processes determine the 
impact of the emission fluxes (the sources) on the meas-
ured concentration values (the receptors). Lagrangian 
trajectories are calculated for the estimation of the SRR 
only for the period the influence of the fluxes to be esti-
mated is significant. The trajectories were calculated in 
the current study for all available receptors. One back-
ward trajectory ensemble of 100 trajectories was calcu-
lated starting on every receptor measurement location 
(see “Measurements:  CO2 mixing ratios measured in 
commercial aircraft, tower and surface stations” sec-
tion on measurements) with a time resolution matching 
that of the measurements (1 h for ground observations, 
10 s for airborne observations). For the computation, the 
ensembles associated with each observation were organ-
ised in groups defined by the observation date (i.e. all 
observations-trajectory ensembles for a period of 24 h). 
For each of these observations-trajectory ensembles 
groups, a FLEXPART simulation was run. A FLEXPART 
simulation can contain an arbitrary number of ensembles 
of trajectories (“releases”) associated with spatiotempo-
ral observations. The release times can be defined with 
a one second time resolution. The gridded and particle 
output was stored every hour for post processing for the 
period necessary for the SRR calculation. For the gridded 
output, the residence times are stored that are a result of 
sampling the trajectories at the internal time step of the 
model. The synchronisation time of FLEXPART is 900 s 
for the advection and 18  s for the turbulent mixing. In 
general no more than the previous 3  days (and usually 

much less, of the order of 1.5 days) are necessary for flux 
estimation in the Tokyo Bay Area, as longer backward 
calculation would come from areas beyond. The refer-
ence inversion was calculated with 36-h trajectories. The 
positions of the particles are stored in order to have avail-
able the end positions of the trajectories in order to esti-
mate the background by means of ensembles of diffusive 
backwards trajectories (see below).

Definition and calculation of the source receptor relationship
For the period under consideration (2005 to 2009), 
ensembles of trajectories associated with the measure-
ments were processed to estimate the source–recep-
tor relationship for all measurement points. The results 
are based on a 20 km × 20 km grid. Every day there are 
at least 48 rows in the SRR matrix corresponding to the 
two ground sites (from WDCGG, the World Data Centre 
for Greenhouse Gases) hourly data (averaged by the pro-
vider). The system required regularisation for the matrix 
inversion. The matrix is solved on a daily basis, allow-
ing a faster calculation than a full matrix for all the data 
in the time series. This sets out a simple parallelisation 
methodology, and is justified by noting that the matrices 
are close to diagonal. For each day of measurements the 
algorithm can provide an estimate of fluxes for the pre-
vious period for which the trajectories are calculated. In 
general, the shapes of the clouds of points used to con-
struct these matrices with different meteorologies show 
a consistent picture of transport (see Additional File 4: 
Figure S4 a and b and text in Additional File 6 for further 
details). The distance between the two operators calcu-
lated as the  L1 norm (the sum of the absolute values) of 
the difference is about 10–15%. Each model’s meteorolo-
gies are based on different assimilation systems (ECMWF 
and NCEP—the National Centers for Environmental 
Prediction). The agreement between different transport 
models sets the stage for subsequent analysis. However, 
even if results obtained using ERA Interim and WRF 
meteorologies are consistent with each other, this can-
not ensure that other errors cannot occur as discussed 
above (“Sensitivity to transport model errors” section). 
The time dependent SRR can be adapted to the estimate 
of the main fluxes directly (i.e. retrieval for static fluxes) 
by adding the columns with the residence times for the 
same emission regions. In that way the SRR matrix can 
be multiplied by a fixed set of mean emissions without 
time dependence in order to obtain a representation of 
the mixing ratio values with the forward model (see “The 
forward model” section).
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Initial and boundary conditions: background concentrations
We use four different background definitions, (1) from 
the data (2) from the Mauna Loa measurements time 
series, (3) from a global model, and (4) from a pertur-
bation to (2) and (3). The reference background can be 
obtained directly from the data, by taking the daily mini-
mum for each ground site or using the free troposphere 
observations of CONTRAIL. A simplified methodology 
for background estimation is based on interpolating the 
value in a clean air ocean station (e.g. Mauna Loa in the 
Pacific) in order to estimate the hemispheric  CO2 back-
ground concentration. Although coarse, this approach 
contains important information about the meridional 
and seasonal baseline concentration. This has the advan-
tage of being quickly and easily calculated for any meas-
urement. In addition, we calculated the flux resulting 
from perturbations to the backgrounds of ± 2  ppb. We 
have used a general circulation model for  CO2 together 
with ensembles of diffusive backward trajectories 
(EDBTs), a previously developed method for Lagran-
gian tracer reconstructions [20, 24, 25, 50]. The global 
 CO2 3D fields are provided by the time dependent out-
put of ACTM [11]. ACTM is the Atmospheric Chemis-
try Transport Model for simulations of long-lived gases 
in the atmosphere is based on the CCSR/NIES/FRCGC 
(Center for Climate System Research/National Institute 
for Environmental Studies/Frontier Research Center for 
Global Change) atmospheric general circulation model 
(AGCM). For a given spatiotemporal observation, EDBTs 
assign as background mixing ratio an average of values 
interpolated from the Eulerian model 3D output. These 
mixing ratio values are interpolated at the endpoints of 
the ensemble trajectories associated with the spatiotem-
poral observation. In this case the background value for 
each measurement location and time was calculated as 
the average of the interpolated ACTM values at the end 
of each member of the ensemble of 100 backward trajec-
tories converging to the measurement location and time. 
Each measurement in space and time can be assigned 
different background values depending on how far back 
in time the background is defined (air mass considered 
“old” or “aged”). It is interesting to establish a compari-
son of the same framework applied to atmospheric flows 
with longer mixing and transport time scales. Those 
yield longer “background” time scales, e.g. up to sev-
eral months in the upper troposphere. When the flow is 
adequately represented, the measurements can be accu-
rately reconstructed [24, 51]. We have assessed different 
options for evaluating the boundary conditions in order 
to estimate the bias they can introduce in the flux esti-
mates in the results and discussion sections. For all back-
ground methodologies, perturbations were calculated in 
order to assess the sensitivity.

Emission fluxes from inventory data
Figure  10 shows the inventories used in this study. 
The a priori information for the anthropogenic fluxes 
is based on two different inventory data sets: from 
the Emissions Database for Global Atmospheric 
Research—EDGAR version 4.2 [4], and from the Car-
bon Dioxide Information Analysis Center—CDIAC 
[52]. EDGAR is developed by the Netherlands Envi-
ronmental Assessment Agency and the European 
Commission’s Joint Research Centre. The database 
allows calculating emissions by country sector and 
includes specific technologies for combustion/process-
ing and emission abatement measures. We used a reso-
lution of 0.1° × 0.1° in this work. EDGAR is provided at 
yearly resolution. For the time series analysis, we used 
2005 as a reference year. The CDIAC database is devel-
oped at The Oak Ridge National Laboratory (ORNL) 
and includes estimates of carbon dioxide emissions 
from fossil-fuel consumption and land-use changes; 
records of atmospheric mixing ratios of carbon diox-
ide and other trace gases that impact the radiative bal-
ance; carbon cycle and terrestrial carbon management 
datasets and analyses; global and regional climate data 
and time series; and analyses of land-cover/land-use 
change. CDIAC is provided by the U.S. Department of 
Energy (DOE). CDIAC is provided at yearly resolution 
and 1° × 1°. For the time series analysis, we used 2005 
as a reference year.

The biogenic fluxes are based on two ecosystem mod-
els: CASA [53] and VISIT [27]. Carnegie-Ames-Stanford 
approach (CASA) is a terrestrial biosphere model that 
simulated monthly changes for carbon dioxide released 
into the atmosphere as microbes decompose plant debris 
in the Earth’s soil. The model simulates net primary pro-
duction (NPP) and soil heterotrophic respiration (HR) 
at regional to global scales. Model outputs include the 
response of net  CO2 exchange and other major trace 
gases in terrestrial ecosystems to inter-annual climate 
variability. CASA is available at monthly resolution at 
1° × 1°. The Vegetation Integrative SImulator for Trace 
gases (VISIT) is an integrated model for simulating the 
biogeochemical interactions. It is designed as a compo-
nent of Earth System Models, connected to them with 
physical interaction schemes. The model consists of car-
bon, nitrogen, and water cycling schemes, which consider 
mutual interactions and aims at simulating exchange of 
trace gases by terrestrial ecosystems. VISIT is provided at 
daily resolution at 1/30° × 1/30°. The inventory flux data 
was interpolated (or aggregated if higher resolution) into 
the model grid conserving the total mass emitted within 
the domain of interest (Fig. 10).
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Inverse modelling
The forward model
Atmospheric composition can be analysed as a combina-
tion of younger (e.g. recent surface emissions) and older 
(long range transport, background value) processes. The 
atmospheric  CO2 mixing ratios at a set of given locations 
in space–time (that can be modelled or measured) can be 
represented as the vector COmix

2  as

where the vector COflux
2  contains the spatiotemporal 

surface emissions, the matrix SRR contains the average 
residence times in the grid cells where the fluxes occur 
of the air masses arriving at the locations where COmix

2  
is sampled (observations and/or models) and the back-
ground CObackground

2  corresponds to the amount of  CO2 

(1)COmix
2 = SRRCO

flux
2 + CO

background
2

present in air parcels before the fluxes take place. The 
SRR does not contain the values of the fluxes but only the 
sensitivity to their locations. Emission inventories pro-
vide information on  CO2 fluxes (see description of pri-
ors in “Emission fluxes from inventory data” section) and 
are solved for in the context of an inverse model. Here, 
Lagrangian transport models are used to calculate the 
matrix SRR as described above.

The inversion algorithm
In this work we apply a Bayesian maximum a posteriori 
method based on a widely used formulation [54, 55]. In 
general, the Linear Least Squares criterion can be writ-
ten as the minimisation of the cost function J  (e.g. Equa-
tion 3.32 of Tarantola [55] in a notation consistent with 
Ide et al. [56]).
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Fig. 10 Inventories used in this study. Upper row (anthropogenic): CDIAC (left), EDGAR (right). Lower row (biogenic): CASA (left), VISIT (right). In 
winter, the anthropogenic emissions can reach 10 mg m−2 s−1 a much higher value than the biogenic fluxes that range below 0.1 mg m−2 s−1
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where yo = COmeasurements
2 − CO

background
2  is the obser-

vation vector, the vector xb is the prior COflux
2  and the 

vector x is the COflux
2  being solved for (the 2D or 3D 

arrays are reshaped into 1D vectors). The linear opera-
tor H (the observation operator in Ide et al. [56]) corre-
sponds to the source–receptor relationship SRR. The yo 
vector is for all sites at once. The SRR is calculated from 
Lagrangian trajectories covering the whole area). The 
vectors x , xb contain the time dependency of the fluxes 
in case it is taken into account. Assuming that both prior 
and posterior probabilities are Gaussian, the centre and 
second moment of the posterior distribution are given by 
the following expressions from Tarantola [55], Eqs. 3.37 
and 3.38, in a notation consistent with Ide et al. [56]:

The different a priori inventory data are available for 
all measurements during the winter months (December, 
January, February and March) from 2005 to 2009. For 
every month, a local sub matrix with the rows corre-
sponding to each day and the columns corresponding to 
the relevant emission regions was constructed. The algo-
rithm is based on a pseudo inverse formulation. The cal-
culations used MATLAB and the LAPACK set of linear 
algebra routines [57].

Observation errors covariance matrix: measurement 
and transport uncertainty
The uncertainty in the observations can be expressed in 
the measurement error covariance matrix R, composed 
of the sum of instrumental error plus representation 
error. In general, representation error is composed of the 
sum of the matrices for aggregation, advection and back-
ground/boundary values. Diagonal elements represent 
the error in each observation and off-diagonal elements 
representing the correlated errors between observa-
tions. The observations yo used in the inversion are the 
differences between the observed mixing ratios and the 
contribution from advection of the background (or lat-
eral boundary) mixing ratios as explained above. Fol-
lowing Thompson et al. [58] the measurement, transport 
and boundary errors are assumed to be correlated over 
space and time. When observations are not aggregated, 

J (x) =
(

Hx − yo
)T

R−1
(

Hx − yo
)

+

(

x − xb
)T

B−1

0

(

x − xb
)

x = xb + B0H
T
(

HB0H
T
+ R

)

−1(

yo −Hxb
)

,

B = B0 − B0H
T
(

HB0H
T
+ R

)

−1

(HB0)

aggregation errors are not taken into account. Therefore 
the observational error is

The diagonal of the instrumental error covariance 
matrix E is the instrumental variance of the averaged 
observations. For every individual ground site, the 
standard deviation of sub-hourly variations within an 
hourly time window was used as the observation error 
when available. This information was only available for 
the Tsukuba tower, and the typical average value found 
was between ~ 1 and 3  ppm. The same value was used 
therefore for the data form Kisai and Dodaira and for 
CONTRAIL. Different instruments are assumed to have 
uncorrelated errors. This is reflected in the correlation 
matrix as the nonzero entries are blocks around the 
diagonal. The degree of correlation between measure-
ment errors is represented by an exponential function, 
exp(∆t/A) where ∆t is the difference in time between 
measurements and A is the temporal correlation scale 
length (0.5 days).

The advection error F is not included in the reference 
inversion, but can be represented based on uncertain-
ties in surface residence reported by Brioude et al. [59]. 
For a typical run at mesoscale in complex terrain, 4 km 
horizontal resolution and 1  h time interval output, the 
average uncertainty and bias in surface residence time 
were found to be 24% and 11% respectively, using instan-
taneous wind as in the current case. Here, the model 
uses absolute concentrations and can be affected by 
transport errors (i.e. mixing height, convection, advec-
tion, diffusion, etc.). The transport error depends on the 
accuracy of the planetary boundary layer (PBL) height 
estimate, which varies throughout the day. The correla-
tion between transport errors is represented by an expo-
nential function, exp(− ∆t/A) where ∆t is the difference 
in time between measurements and A is the correlation 
time scale. We performed sensitivity tests for different 
representations of F, the default being the diagonal of F 
defined as (0.24 y)2. This is discussed in “Discussion” sec-
tion including some elementary sensitivity calculations.

Prior flux error covariance matrix
Following Gerbig et al. [60] and Thompson et al. [58] the 
diagonal elements of  B0 (also called  Sprior) are related to 
the squared errors for each of the state variables (fluxes 
in grid cells) and the off-diagonal elements are derived 
from the correlated errors between them. The correlation 
is described by an exponential function

where ∆d is the distance between state variables and ∆t 
is the time interval between variables representing fluxes 

Observations (R) = Instrumental (E) + Advection (F)

C(d, t) = e
−�d/D −�t/T
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at the same location but at different points in time. The 
denominator D is the spatial correlation scale length. T is 
the temporal correlation scale interval. We used different 
errors and error correlations for land (urban and rural) 
and sea fluxes.

For the error variance, given the lack of error esti-
mates for the EDGAR and CDIAC inventories we have 
tested a range of values for the prior error and the error 
covariance. The prior flux error (the “standard devia-
tion”) is assumed to be 50% for land grid cells and 100% 
for sea grid cells. Anthropogenic sea carbon fluxes may 
be nonzero due to maritime traffic which is non negligi-
ble in the Tokyo bay. The values provided by Moriwaki 
and Kanda [28] are available for comparison in the urban 
areas and, although limited in spatial coverage, are con-
sistent with the error estimate. For the water grid cells no 
flux measurements are available for comparison.

Following Lauvaux et  al. [61] who estimated spatial 
and temporal correlations in the model-data mismatch 
for  CO2 inversions, horizontal correlation lengths are of 
the order of 50 km based on the spatial scale of the minor 
semi-axis (approximately north–south) of the Tokyo 
megalopolis. Because of the relative lack of additional 
information, we chose a correlation length that is consist-
ent with the size of the Tokyo urban area. An approxima-
tion for the order of magnitude of the “diameter” of the 
TBA is 100 km. This relatively large spatial scale favours 
the geographical structure of the prior in the posterior: a 
modelling choice that helps the interpretation of the pos-
terior results. But it is challenging to provide an objec-
tive definition. There are strong vertical correlations in 
the boundary layer, particularly during the day. Tempo-
ral correlations are stronger than spatial correlations and 
can last for most of a day. Land correlation scales are 
assumed to be shorter, 50  km and 10  km for rural and 
urban areas respectively.

The denominator D (the spatial correlation scale) is 
100 km for sea fluxes. We are not giving priority in this 
study to assess the anthropogenic ship emissions. The 
temporal correlation scale length T is 30 days for the sea 
emissions between 1 and 3  days for the rural emissions 
(consistent with the maximum length of the trajectories) 
and 12  h for the urban emissions. There is no diurnal 
cycle in the prior emissions. The temporal correlations 
do not apply to static fluxes retrievals. The correlation 
between different grid cell types (sea, rural and urban, 
see Additional file 1: Figure S1) is assumed to be zero for 
simplicity in the subsequent analysis. Additional file  7: 
Figure S6 shows the retrieved fluxes resulting from con-
structing the prior error covariance matrix with alterna-
tive diagonal and off-diagonal terms.

The magnitude of the error reduction can be defined 
as r = 1 − σposterior/σprior, where σposterior and σprior are the 
diagonal elements of the error covariance matrices B and 
 B0 respectively [62]. By the usual definition of σposterior 
(from the covariance matrices B0 and R are positive defi-
nite and the SRR has positive entries) r is always between 
0 and 1. It is maximal if σposterior = 0 and it is zero if 
σposterior = σprior. Therefore r can be interpreted as a meas-
ure of the reduction in uncertainty in the posterior esti-
mate of the flux after the introduction of the information 
contained in the measurements. The lower right panel in 
Fig. 1 shows the spatial distribution of r in a latitude/lon-
gitude map. The error reduction correlation coefficient 
with the areas where the prior flux is higher is 0.68 with a 
p value < 0.01.

Additional files

Additional file 1: Figure S1. Detail of the masks used for space averag-
ing and construction of the error covariance matrix. Upper row: rural, 
urban and sea domains. Lower row: areas corresponding to EDGAR grid 
cells with flux higher than 1 mg m−2 s−1 (left panel) and 0.1 mg m−2 s−1 
(center panel), for reference. Right panel shows the inner domain used 
when averaging over all areas.

Additional file 2: Figure S2. Vertical distribution of the data used in this 
study. The peaks corresponding to Kisai (13 m.a.s.l.), Dodaira (840 m.a.s.l.), 
and three levels of the Tsukuba tower (base at 33 m.a.s.l., inlets at 25 m, 
100 m, and 200 m above ground level) are apparent. The remaining data 
variably distributed in height correspond to CONTRAIL data. The lowest 
data near the polluted airport within the mixed layer and directly influ-
enced by the runaway emissions where not included in the inversions. A 
higher layer of consistently high values around 1 km was also removed. 
Night data between 00:00 and 06:00 was only used in the sensitivity tests.

Additional file 3: Figure S3. Hourly distribution of the CONTRAIL data 
used in this study. Most flights depart or arrive during the day. Only hours 
between 06:00 and 24:00 are used for the standard inversion.

Additional file 4: Figure S4. S4a) Source receptor relationship matrix 
calculated with different winds. Left: panel ERA Interim. Center panel: 
WRF. Right panel: difference. Rows (vertical axis) represent measure-
ments grouped by site and release time (D = Dodaira, K = Kisai, T1 = 
Tsukuba 25 m, T2 = Tsukuba 100 m, T3 = Tsukuba 200 m, C = CONTRAIL). 
Columns (horizontal axis) represent the Tokyo Bay Area spatiotemporal 
surface fluxes between 2007-01-11 00:00 and 2007-01-13 24:00 JST. This 
corresponds to trajectory ensembles released during 2007-01-13 and 
integrated 48 h backwards in time. Source regions are aggregated by 
prefecture in the Kanto area for this particular case totaling 9 regiones (7 
prefectures, rest of the land and sea) to improve the visualization as higher 
resolution SRRs are usually sparser. The gaps (matrix entries with SRR = 0) 
correspond to source regions not reached by the backward trajectories, 
i.e. for which the measurements provide no constraint. Time resolution 
of the fluxes is 3 hours here, but can change between 1 hour and static. 
Color scale represents the source-receptor relationship value in hours (i.e., 
the residence time: a factor that depends on the footprint layer height 
gives the sensitivity in e.g. mg  CO2 m2s−1)−1. The integrated difference 
is of the order of 15 % of the source-receptor relationship calculated 
either with WRF of with ERA Interim winds. S4b) Three hourly footprints 
corresponding to the SRR described above. First columns: ECMWF winds. 
Second column: WRF winds. Third column: Difference ECMWF minus WRF. 
The shift North East– South West is apparent. The wind situation depicted 
is not uncommon. Compare with Fig. 6, where the misalignment is artifi-
cially produced by shifting the SRR directly.

https://doi.org/10.1186/s13021-019-0118-8
https://doi.org/10.1186/s13021-019-0118-8
https://doi.org/10.1186/s13021-019-0118-8
https://doi.org/10.1186/s13021-019-0118-8
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Additional file 5: Figure S5. Domains of the WRF model version used 
in this study. Left: outer domain, 25 km horizontal resolution. Right: inner 
domain, 10 km horizontal resolution.

Additional file 6: Table S1. Flux density in  mgCO2 m−2 s−2. Text S1. 
Further details of the CONTRAIL observations. Text S2. Definition and 
calculation of the Source Receptor Relationship. Text S3. Sensitivity to 
other elements of the inversion system. Table S2. Including transport 
model errors in the observation covariance matrix: perturbations on the 
SRR matrix. Table S3. Including transport model errors in the observa-
tion covariance matrix: background representation. Table S4. Including 
transport model errors in the observation covariance matrix for 3 hourly 
resolved, averaged fluxes. Text S4. Emission inventories for the city of 
Tokyo. Table S5. Yearly estimates of emissions from the energy sector 
from the Tokyo Metropolitan Government. Text S5. Information coming 
from the retrieval and the emissions inventory.

Additional file 7: Figure S6. Impact of changing the off diagonal terms 
on the prior error covariance matrix. S6a) Reducing the correlations to 10 
km for all grid cells: the error reduction still follows roughly the prior fluxes 
distribution due to the diagonal terms proportional to the fluxes. S6b) 
The off diagonal terms are zero and the diagonal terms constant and set 
by the maximum gridcell value (1-sigma = max over the domain). The 
uncertainty is reduced mainly around the location of the observations and 
the error reduction follows the flow of the Lagrangian trajectories driven 
by the meteorological winds.

Abbreviations
ACTM: Atmospheric Chemistry Transport Model, the CCSR/NIES/FRCGC (Center 
for Climate System Research/National Institute for Environmental Studies/Fron-
tier Research Center for Global Change) atmospheric general circulation model 
(AGCM)-based chemistry transport model has been developed for simula-
tions of long-lived gases in the atmosphere; CASA: Carnegie-Ames-Stanford 
Approach; CDIAC: Carbon Dioxide Information Analysis Center; CONTRAIL: Com-
prehensive Observation Network for TRace gases by AIrLiner; ECMWF: European 
Center for Medium-Range Weather Forecasts; EDGAR : Emission Database for 
Global Atmospheric Research; FLEXPART : FLEXiblePARTicle model; GHG: green-
house gas; JAMSTEC: Japanese Agency for Marine-Earth Science and Technol-
ogy; NCEP: National Centers for Environmental Prediction; SRR: source–receptor 
relationship; STILT: Stochastic Time-Inverted Lagrangian Transport model; TBA: 
Tokyo Bay Area; TRACZILLA: a FLEXPART branch focused on trajectory modeling; 
VISIT: Vegetation Integrative SImulator for Trace gases; WDCGG : World Data 
Centre for Greenhouse Gases; WRF: Weather Research and Forecasting model.

Authors’ contributions
IP prepared the data, performed the model simulations and analysis and 
wrote the manuscript. PP and MT participated in the analysis of the results 
and writing of the manuscript. TM, HM, YS collected and provided the data. All 
authors read and approved the final manuscript.

Author details
1 JAMSTEC, Yokohama 236 0001, Japan. 2 National Institute for Environmen-
tal Studies, Tsukuba 305 8506, Japan. 3 Meteorological Research Institute, 
Tsukuba 305 0052, Japan. 4 Present Address: NILU, 2027 Kjeller, Norway. 

Acknowledgements
The main part of the present work was performed between 2009 and 2012 at 
JAMSTEC. Subsequent analyses were supported by the projects URGE-SIS and 
eSTICC at NILU.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
All codes and model data are available upon request. CONTRAIL data are 
available from http://www.cger.nies.go.jp/contr ail/. The Tsukuba tower data 
are available upon request to NIES (The Tsukuba tower was demolished and 
is no longer available). The Dodaira and Kisai data are available from https 
://gaw.kisho u.go.jp (last access 2019-03-27). EDGAR emissions are available 
from http://edgar .jrc.ec.europ a.eu/overv iew.php?v=42FT2 010 (last access 

2019-03-27). CDIAC data were obtained from https ://cdiac .ess-dive.lbl.gov (the 
database will be moved to https ://ess-dive.lbl.gov). CASA data were provided 
by the NASA-CASA project (http://cques t.arc.nasa.gov:8399/casa/index .html). 
VISIT data are available upon request.

Consent for publication
All authors have provided consent for publication.

Ethics approval and consent to participate
Not applicable.

Funding
The corresponding author was funded by a JAMSTEC Postdoctoral research 
fellowship. This work was partially funded by the Nordic Center of Excellence 
eSTICC (eScience Tools for Investigating Climate Change in northern high 
latitudes) funded by Nordforsk (Grant 57001). This work was partially funded 
by the project URGE-SIS at NILU funded by the Norwegian Research Council.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 25 October 2018   Accepted: 15 April 2019

References
 1. Intergovernmental Panel on Climate Change. Climate change 2013 

– the physical science basis: working group I contribution to the fifth 
assessment report of the intergovernmental panel on climate change. 
Cambridge: Cambridge University Press; 2014. https ://doi.org/10.1017/
cbo97 81107 41532 4.

 2. Intergovernmental Panel on Climate Change. Climate change 2014: 
mitigation of climate change: working group III contribution to the 
IPCC fifth assessment report. Cambridge: Cambridge University Press; 
2015. https ://doi.org/10.1017/CBO97 81107 41541 6

 3. Peylin P, Law RM, Gurney KR, Chevallier F, Jacobson AR, Maki T, Niwa 
Y, Patra PK, Peters W, Rayner PJ, Rodenbeck C, van der Laan-Luijkx IT, 
Zhang X. Global atmospheric carbon budget: results from an ensemble 
of atmospheric  CO2 inversions. Biogeosciences. 2013;10:6699–720. 
https ://doi.org/10.5194/bg-10-6699-2013.

 4. Janssens-Maenhout G, Crippa M, Guizzardi D, Muntean M, Schaaf E, 
Olivier JGJ, Peters JAHW, Schure KM. Fossil  CO2 and GHG emissions 
of all world countries, EUR 28766 EN. Luxembourg: Publications 
Office of the European Union; 2017. https ://doi.org/10.2760/70979 2 
(JRC107877). ISBN 978-92-79-73207-2.

 5. National Research Council. Verifying greenhouse gas emissions: methods 
to support international climate agreements. Washington, D.C.: National 
Academies Press; 2010. p. 124.

 6. Duren RM, Miller CE. Commentary: Measuring the carbon emissions of 
megacities. Nat Clim Change. 2012;2:560–2.

 7. Mays KL, Shepson PB, Stirm BH, Karion A, Sweeney C, Gurney KR. Aircraft-
based measurements of the carbon footprint of Indianapolis. Environ Sci 
Technol. 2009;43:7816–23. https ://doi.org/10.1021/es901 326b.

 8. Turnbull JC, Karion A, Fischer ML, Faloona I, Guilderson T, Lehman SJ, 
Miller BR, Miller JB, Montzka S, Sherwood T, Saripalli S, Sweeney C, Tans 
PP. Assessment of fossil fuel carbon dioxide and other anthropogenic 
trace gas emissions from airborne measurements over Sacramento, 
California in spring 2009. Atmos Chem Phys. 2011;11:705–21. https ://doi.
org/10.5194/acp-11-705-2011.

 9. Newman S, Jeong S, Fischer ML, Xu X, Haman CL, Lefer B, Alvarez S, Rap-
penglueck B, Kort EA, Andrews AE, Peischl J, Gurney KR, Miller CE, Yung 
YL. Diurnal tracking of anthropogenic  CO2 emissions in the Los Angeles 
basin megacity during spring 2010. Atmos Chem Phys. 2013;13:4359–72.

 10. Turnbull J, Sweeney C, Karion A, Newberger T, Tans P, Lehman S, Davis 
KJ, Miles NL, Richardson SJ, Lauvaux T, Cambaliza MO, Shepson P, Gurney 
K, Patara-suk R, Zondervan A. Towards quantification and source sector 
identification of fossil fuel  CO2 emissions from an urban area: results from 

https://doi.org/10.1186/s13021-019-0118-8
https://doi.org/10.1186/s13021-019-0118-8
https://doi.org/10.1186/s13021-019-0118-8
http://www.cger.nies.go.jp/contrail/
https://gaw.kishou.go.jp
https://gaw.kishou.go.jp
http://edgar.jrc.ec.europa.eu/overview.php?v=42FT2010
https://cdiac.ess-dive.lbl.gov
https://ess-dive.lbl.gov
http://cquest.arc.nasa.gov:8399/casa/index.html
https://doi.org/10.1017/cbo9781107415324
https://doi.org/10.1017/cbo9781107415324
https://doi.org/10.1017/CBO9781107415416
https://doi.org/10.5194/bg-10-6699-2013
https://doi.org/10.2760/709792
https://doi.org/10.1021/es901326b
https://doi.org/10.5194/acp-11-705-2011
https://doi.org/10.5194/acp-11-705-2011


Page 22 of 23Pisso et al. Carbon Balance Manage            (2019) 14:6 

the INFLUX experiment. Geophys Res Atmos. 2015;120:292–312. https ://
doi.org/10.1002/2014j d0225 55.

 11. Patra PK, Law RM, Peters W, Rödenbeck C, Takigawa M, Aulagnier C, Baker 
I, Bergmann DJ, Bousquet P, Brandt J, Bruhwiler L, Cameron-Smith PJ, 
Christensen JH, Delage F, Denning AS, Fan S, Geels C, Houweling S, Imasu 
R, Karstens U, Kawa SR, Kleist J, Krol MC, Lin S-J, Lokupitiya R, Maki T, Mak-
syutov S, Niwa Y, Onishi R, Parazoo N, Pieterse G, Rivier L, Satoh M, Serrar S, 
Taguchi S, Vautard R, Vermeulen AT, Zhu Z. TransCom model simulations 
of hourly atmospheric  CO2: analysis of synoptic-scale variations for the 
period 2002–2003. Glob Biogeochem Cycle. 2008;22:4013.

 12. Feng S, Lauvaux T, Newman S, Rao P, Ahmadov R, Deng A, Díaz-Isaac LI, 
Duren RM, Fischer ML, Gerbig C, Gurney KR, Huang J, Jeong S, Li Z, Miller 
CE, O’Keeffe D, Patarasuk R, Sander SP, Song Y, Wong KW, Yung YL. Los 
Angeles megacity: a high-resolution land–atmosphere modelling system 
for urban  CO2 emissions. Atmos Chem Phys. 2016;16:9019–45. https ://doi.
org/10.5194/acp-16-9019-2016.

 13. Nehrkorn T, Henderson J, Leidner M, Mountain M, Eluszkiewicz J, McKain 
K, Wofsy S. WRF simulations of the urban circulation in the Salt Lake City 
Area for  CO2 modeling. J Appl Meteorol Clim. 2013;52:323–40. https ://doi.
org/10.1175/jamc-d-12-061.1.

 14. Lin JC, Gerbig C, Wofsy SC, Chow VY, Gottlieb E, Daube BC, Matross DM. 
Designing Lagrangian experiments to measure regional-scale trace gas 
fluxes. J Geophys Res. 2007;112:D13312.

 15. McKain K, Wofsy SC, Nehrkorn T, Eluszkiewicz J, Ehleringer JR, Stephens 
BB. Assessment of ground based atmospheric observations for verifica-
tion of greenhouse gas emissions from an urban region. Proc Natl Acad 
Sci. 2012;109:8423–8. https ://doi.org/10.1073/pnas.11166 45109 .

 16. Bréon FM, Broquet G, Puygrenier V, Chevallier F, Xueref-Remy I, Ramonet 
M, Dieudonné E, Lopez M, Schmidt M, Perrussel O, Ciais P. An attempt 
at estimating Paris area  CO2 emissions from atmospheric concentra-
tion measurements. Atmos Chem Phys. 2015;15:1707–24. https ://doi.
org/10.5194/acp-15-1707-2015.

 17. Sargent M, Barrera Y, Nehrkorn T, Hutyra LR, Gately CK, Jones T, McKain K, 
Sweeney C, Hegarty J, Hardiman B, Wang JA, Wofsy SC. Anthropogenic 
and biogenic  CO2 fluxes in the Boston urban region. Proc Natl Acad Sci. 
2018;115:7491–6. https ://doi.org/10.1073/pnas.18037 15115 .

 18. Babenhauserheide A, Hase F, Morino I. The fossil fuel emissions of Tokyo 
estimated directly from measurements of the Tsukuba TCCON site. Atmos 
Meas Tech Discuss. 2018. https ://doi.org/10.5194/amt-2018-224 (Manu-
script under review for journal Atmos Meas Tech. 2018).

 19. Tohjima Y, Mukai H, Hashimoto S, Patra PK. Increasing synoptic scale vari-
ability in atmospheric  CO2 at Hateruma Island associated with increasing 
East Asian emissions. Atmos Chem Phys. 2010;10:453–62.

 20. Pisso I, Real E, Law KS, Legras B, Bousserez N, Attié JL, Schlager H. Estima-
tion of mixing in the troposphere from Lagrangian trace gas reconstruc-
tions during long range pollution plume transport. J Geophys Res. 
2010;114:D19301.

 21. Stohl A, Forster C, Frank A, Seibert P, Wotawa G. Technical note: The 
Lagrangian particle dispersion model FLEXPART version 6.2. Atmos Chem 
Phys. 2005;5:2461–74. https ://doi.org/10.5194/acp-5-2461-2005.

 22. de Foy B, Zavala M, Bei N, Molina LT. Evaluation of WRF mesoscale simula-
tions and particle trajectory analysis for the MILAGRO field campaign. 
Atmos Chem Phys. 2009;9:4419–38.

 23. Brioude J, Arnold D, Stohl A, Cassiani M, Morton D, Seibert P, Angevine W, 
Evan S, Dingwell A, Fast JD, Easter RC, Pisso I, Burkhart J, Wotawa G. The 
Lagrangian particle dispersion model FLEXPART-WRF version 3.1. Geosci 
Model Dev. 2013;6:1889–904. https ://doi.org/10.5194/gmd-6-1889-2013.

 24. Legras B, Pisso I, Berthet G, Lefevre F. Variability of the Lagrangian 
turbulent diffusion in the lower stratosphere. Atmos Chem Phys. 
2005;5:1605–22.

 25. Pisso I, Legras B. Turbulent vertical diffusivity in the sub-tropical strato-
sphere. Atmos Chem Phys. 2008;8:697–707.

 26. Enting IG. Inverse problems in atmospheric constituent transport. Cam-
bridge: Cambridge Univ. Press; 2002. p. 392.

 27. Saito M, Ito A, Maksyutov S. Optimization of a prognostic biosphere 
model in atmospheric  CO2 variability and terrestrial biomass. Geosci 
Model Dev. 2014;7:1829–40. https ://doi.org/10.5194/gmd-7-1829-2014.

 28. Moriwaki R, Kanda M. Seasonal and diurnal fluxes of radiation, heat, 
water vapor, and carbon dioxide over a suburban area. J Appl Meteorol. 
2004;43:1700–10.

 29. Göckede M, Turner DP, Michalak AM, Vickers D, Law BE. Sensitivity of 
a subregional scale atmospheric inverse  CO2 modeling framework to 
boundary conditions. J Geophys Res. 2010;115:D24112. https ://doi.
org/10.1029/2010J D0144 43.

 30. Lauvaux T, Schuh AE, Uliasz M, Richardson S, Miles N, Andrews AE, 
Sweeney C, Diaz LI, Martins D, Shepson PB, Davis KJ. Constraining the  CO2 
budget of the corn belt: exploring uncertainties from the assumptions in 
a mesoscale inverse system. Atmos Chem Phys. 2012;12:337–54. https ://
doi.org/10.5194/acp-12-337-2012.

 31. Holzer M, Hall T. Transit-time and tracer-age distributions in geophysical 
flows. J Atmos Sci. 2000;57:3539–58.

 32. Morse PM, Feshbach H. Methods of theoretical physics, part I. New York: 
McGraw-Hill; 1953. p. 857–9.

 33. Lauvaux T, Miles NL, Deng A, Richardson SJ, Cambaliza MO, Davis KJ, 
Gaudet B, Gurney KR, Huang J, O’Keefe D, Song Y, Karion A, Oda T, 
Patarasuk R, Razlivanov I, Sarmiento D, Shepson P, Sweeney C, Turnbull 
J, Wu K. High-resolution atmospheric inversion of urban  CO2 emissions 
during the dormant season of the Indianapolis Flux Experiment (INFLUX). 
J Geophys Res Atmos. 2016;121(10):5213–36.

 34. Turner AJ, Shusterman AA, McDonald BC, Teige V, Harley RA, Cohen 
RC. Network design for quantifying urban  CO2 emissions: assessing 
trade-offs between precision and network density. Atmos Chem Phys. 
2016;16(21):13465–75. https ://doi.org/10.5194/acp-16-13465 -2016.

 35. Ye X, Lauvaux T, Kort EA, Oda T, Feng S, Lin JC, Yang E, Wu D. Constrain-
ing fossil fuel  CO2 emissions from urban area using OCO-2 observa-
tions of total column  CO2. Atmos Chem Phys Discuss. 2017. https ://doi.
org/10.5194/acp-2017-1022.

 36. Stohl A, Kim J, Li S, O’Doherty S, Muhle J, Salameh PK, Saito T, Vollmer MK, 
Wan D, Weiss RF, Yao B, Yokouchi Y, Zhou LX. Hydrochlorofluorocarbon 
and hydrofluorocarbon emissions in East Asia determined by inverse 
modeling. Atmos Chem Phys. 2010;10:3545–60.

 37. Thompson RL, Stohl A. FLEXINVERT: an atmospheric Bayesian inversion 
framework for determining surface fluxes of trace species using an opti-
mized grid. Geosci Model Dev. 2014;7:2223–42. https ://doi.org/10.5194/
gmd-7-2223-2014.

 38. Rayner PJ, Raupach MR, Paget M, Peylin P, Koffi E. A new global gridded 
data set of  CO2 emissions from fossil fuel combustion: methodol-
ogy and evaluation. J Geophys Res. 2010;115:D19306. https ://doi.
org/10.1029/2009j d0134 39.

 39. Oda T, Maksyutov S, Andres RJ. The Open-source Data Inventory for 
Anthropogenic  CO2, version 2016 (ODIAC2016): a global monthly fossil 
fuel  CO2 gridded emissions data product for tracer transport simulations 
and surface flux inversions. Earth Syst Sci Data. 2018;10(87–107):2018. 
https ://doi.org/10.5194/essd-10-87-2018.

 40. Pisso I, Patra P, Nakazawa T, Sawa Y, Machida T, Matsueda H. Constraints 
on  CO2 flux emissions: reconstructions of in situ measurements from 
Lagrangian stochastic inversion, Eos Trans. In: AGU, 91(26), Meet. Am. 
Suppl., Abstract B31B-06. 2010.

 41. Inoue HY, Matsueda H. Variations in atmospheric  CO2 at the Meteorologi-
cal Research Institute, Tsukuba, Japan. J Atmos Chem. 1996;23:137–61.

 42. Inoue HY, Matsueda H. Measurements of atmospheric  CO2 from a mete-
orological tower in Tsukuba, Japan. Tellus B. 2001;53:205–19.

 43. Ishii M, Saito S, Tokieda T, Kawano T, Matsumoto K, Yoshikawa-Inoue H. 
Variability of surface layer  CO2 parameters in the Western and Central 
Equatorial Pacific. Glob Environ Changes Ocean Land B. 2004;53:59–94.

 44. Machida T, Matsueda H, Sawa Y, Nakagawa Y, Hirotani K, Kondo N, 
Goto K, Ishikawa K, Nakazawa T, Ogawa T. Worldwide measurements of 
atmospheric  CO2 and other trace gas species using commercial airlines. J 
Atmos Ocean Technol. 2008;25(10):1744–54.

 45. Imasu R, Tanabe Y. Diurnal and Seasonal variations of carbon dioxide 
 (CO2) concentration in urban, suburban, and rural areas around Tokyo. 
Atmosphere. 2018;9:367. https ://doi.org/10.3390/atmos 91003 67.

 46. Takigawa M, Niwano M, Akimoto H, Takahashi M. Development of a 
one-way nested global-regional air quality forecasting model. Sola. 
2007;3:81–4.

 47. Ballav S, Patra PK, Takigawa M, Ghosh S, De UK, Maksyutov S, Murayama 
S, Mukai H, Hashimoto S. Simulation of  CO2 concentration over east 
Asia using regional transport model WRF-CO2. J Meteorol Soc Jpn. 
2012;90:959–76.

https://doi.org/10.1002/2014jd022555
https://doi.org/10.1002/2014jd022555
https://doi.org/10.5194/acp-16-9019-2016
https://doi.org/10.5194/acp-16-9019-2016
https://doi.org/10.1175/jamc-d-12-061.1
https://doi.org/10.1175/jamc-d-12-061.1
https://doi.org/10.1073/pnas.1116645109
https://doi.org/10.5194/acp-15-1707-2015
https://doi.org/10.5194/acp-15-1707-2015
https://doi.org/10.1073/pnas.1803715115
https://doi.org/10.5194/amt-2018-224
https://doi.org/10.5194/acp-5-2461-2005
https://doi.org/10.5194/gmd-6-1889-2013
https://doi.org/10.5194/gmd-7-1829-2014
https://doi.org/10.1029/2010JD014443
https://doi.org/10.1029/2010JD014443
https://doi.org/10.5194/acp-12-337-2012
https://doi.org/10.5194/acp-12-337-2012
https://doi.org/10.5194/acp-16-13465-2016
https://doi.org/10.5194/acp-2017-1022
https://doi.org/10.5194/acp-2017-1022
https://doi.org/10.5194/gmd-7-2223-2014
https://doi.org/10.5194/gmd-7-2223-2014
https://doi.org/10.1029/2009jd013439
https://doi.org/10.1029/2009jd013439
https://doi.org/10.5194/essd-10-87-2018
https://doi.org/10.3390/atmos9100367


Page 23 of 23Pisso et al. Carbon Balance Manage            (2019) 14:6 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ?  Choose BMC and benefit from: 

 48. Grell GA, Peckham SE, Schmitz R, McKeen SA, Frost G, Skamarock WC, 
Eder B. Fully coupled “online” chemistry within the WRF model. Atmos 
Environ. 2005;39:6957–75.

 49. Simmons A, Uppala S, Dee D, Kobayashi S. ERA-Interim: new ECMWF 
reanalysis products from 1989 onwards. ECMWF Newsl. 2007;110:29–35.

 50. Pisso I. Turbulent diffusivity in the atmosphere. Ph.D thesis. EcolePoly-
technique, Paris. 2006.

 51. Pisso I, Patra P, Nakazawa T, Sawa Y, Machida T, Matsueda H. Constraints 
on  CO2 flux emissions: reconstructions of in situ measurements from 
Lagrangian stochastic inversion, Eos Trans. In: AGU, 90(52), Fall Meet. 
Suppl., Abstract B51E-0342. 2009.

 52. Andres RJ, Boden TA, Marland G. Carbon dioxide information analysis 
center (CDIAC),  CO2 emission inventory. http://cdiac .ornl.gov. https ://doi.
org/10.3334/cdiac /ffe.ndp05 8.2016.

 53. Potter C, Li S, Hiatt C. Declining vegetation growth rates in the eastern 
United States from 2000 to 2010. Nat Resour. 2012;3(4):184.

 54. Menke W. Geophysical data analysis: discrete inverse theory. San Diego: 
Academic Press; 1984. p. 285.

 55. Tarantola A. Inverse problem theory and methods for model parameter 
estimation. Philadelphia: Society for Industrial and Applied Mathematics; 
2005. p. 342.

 56. Ide K, Courtier P, Ghil M, Lorenc A. Unified notation for data assimila-
tion: operational, sequential and variational. J Meteorol Soc Jpn. 
1997;75:181–9.

 57. Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J, Du Croz 
J, Greenbaum A, Hammarling S, McKenney A, Sorensen D. LAPACK users’ 
guide. 3rd ed. Philadelphia: Society for Industrial and Applied Mathemat-
ics; 1999. ISBN 0-89871-447-8.

 58. Thompson RL, Gerbig C, Roedenbeck C. A Bayesian inversion estimate 
of  N2O emissions for western and central Europe and the assessment of 
aggregation errors. Atmos Chem Phys. 2011:11:3443–458. https ://doi.
org/10.5194/acp-11-3443-2011.

 59. Brioude J, Angevine WM, McKeen SA, Hsie EY. Numerical uncertainty at 
mesoscale in a Lagrangian model in complex terrain. Geosci Model Dev. 
2012;5:1127–36. https ://doi.org/10.5194/gmd-5-1127-2012.

 60. Gerbig C, Lin JC, Munger JW, Wofsy SC. What can tracer observations in 
the continental boundary layer tell us about surface-atmosphere fluxes? 
Atmos Chem Phys. 2006;6:539–54.

 61. Lauvaux T, Pannekoucke O, Sarrat C, Chevallier F, Ciais P, Noilhan J, Rayner 
PJ. Structure of the transport uncertainty in mesoscale inversions of  CO2 
sources and sinks using ensemble model simulations. Biogeosciences. 
2009;6:1089–102.

 62. Lauvaux T, Uliasz M, Sarrat C, Chevallier F, Bousquet P, Lac C, Davis KJ, Ciais 
P, Denning AS, Rayner PJ. Mesoscale inversion: first results from the CERES 
campaign with synthetic data. Atmos Chem Phys. 2008;8:3459–71.

http://cdiac.ornl.gov
https://doi.org/10.3334/cdiac/ffe.ndp058.2016
https://doi.org/10.3334/cdiac/ffe.ndp058.2016
https://doi.org/10.5194/acp-11-3443-2011
https://doi.org/10.5194/acp-11-3443-2011
https://doi.org/10.5194/gmd-5-1127-2012

	Assessing Lagrangian inverse modelling of urban anthropogenic CO2 fluxes using in situ aircraft and ground-based measurements in the Tokyo area
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Results
	Emission flux inversion and simulated mixing ratio calculation
	Sensitivity to different inversion system parameters
	Sensitivity to measurement amount and location
	Sensitivity to background concentration representation
	Sensitivity to transport model errors and biases
	Sensitivity to the prior flux inventory


	Discussion
	Conclusions
	Methods: description of the data and numerical models
	Description of the urban area selected for the study
	Measurements: CO2 mixing ratios measured in commercial aircraft, tower and surface stations
	Atmospheric composition and transport modeling
	Lagrangian trajectories and particle dispersion models
	Definition and calculation of the source receptor relationship
	Initial and boundary conditions: background concentrations
	Emission fluxes from inventory data

	Inverse modelling
	The forward model
	The inversion algorithm
	Observation errors covariance matrix: measurement and transport uncertainty
	Prior flux error covariance matrix


	Authors’ contributions
	References




