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Abstract 

Background: Mangrove forests have gained recognition for their potential role in climate change mitigation due to 
carbon sequestration in live trees, and carbon storage in the sediments trapped by mangrove tree roots and pneu‑
matophores. Africa hosts about 19% of the world’s mangroves, yet relatively few studies have examined the carbon 
stocks of African mangroves. The available studies report considerable differences among sites and amongst the 
different pools of carbon stocks. None considered the effects of seaward distance. We present details of AGC and SOC 
carbon stocks for Lindi in Tanzania, and focus on how these values differ with increasing seaward distance and, how 
our results compare to those reported elsewhere across Africa.

Results: AGC ranged between 11 and 55 Mg C  ha−1, but was not significantly affected by seaward distance. SOC for 
0–1 m depth ranged from 154 to 484, with a mean of 302 Mg C ha−1. SOC was significantly negatively correlated with 
seaward distance. Mangrove type (estuarine/oceanic), soil erosion, soil depth may explain these differences We note 
important methodological differences in previous studies on carbon stocks in mangroves in Africa.

Conclusion: This study indicates that seaward distance has an important effect on SOC stocks in the Lindi region of 
Tanzania. SOC should be fully incorporated into national climate change mitigation policies. Studies should report 
seaward distance and to describe the type of mangrove stand to make results easily comparable across sites and 
to assess the true value of Blue Carbon in Africa. We recommend focusing on trees > 10 cm diameter for AGC, and 
sampling soils to at least 1 m depth for SOC, which would provide a more complete assessment of the potentially 
considerable mangrove carbon store.
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Background
Mangroves are salt-tolerant ecosystems that grow at 
the interface between land and sea in tropical and sub-
tropical latitudes [1, 2]. Mangroves provide a number of 
important ecosystem services to humans; in addition to 

being an essential source of building materials and fire-
wood, they act as irreplaceable nursery habitats for eco-
nomically and ecologically valuable marine species [3–5] 
and provide coastal protection from waves and storms 
[6, 7]. Additionally, they improve water quality through 
nutrient recycling and sediment regulation [5, 8]. More 
recently, mangrove ecosystems have gained recognition 
for their potential role in climate change mitigation due 
to the carbon sequestration in trees and storage in the 
sediments that are trapped by the mangrove tree roots 
and pneumatophores [8–10]. Together with seagrass 
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beds and salt marshes, mangroves form the ‘Blue Carbon’ 
ecosystems [11] which are attracting increased attention 
as one way to store carbon and reduce the speed of global 
warming. Although coastal vegetated habitats represent a 
much smaller area than terrestrial forests, their total con-
tribution to long-term carbon sequestration is compa-
rable to carbon sinks in terrestrial ecosystem types [10]. 
Like many other forests and woodlands, because primary 
production exceeds respiration, mangroves are net auto-
trophic ecosystem and produce more energy than they 
utilise [12, 13] and therefore function, if not degraded, 
as one of the most effective global  CO2 sinks [14]. Man-
groves have the greatest carbon stock among the Blue 
Carbon ecosystems, storing 6.5 Pg carbon globally, whilst 
saltmarshes and sea grass meadows stock 2.0 and 2.3 Pg 
carbon, respectively [15]. Notwithstanding this poten-
tial interest the details of the mangrove carbon store and 
how this responds to drivers of change remain relatively 
unknown: of 13,000 peer‐reviewed papers published on 
mangroves over the past 30 years, less than 1%, most in 
the last 10 years, examined their role in the carbon cycle 
[16].

Despite their importance, over the past 60 years more 
than one-third of the world’s mangroves have been lost 
[17], but the history of their degradation extends through 
centuries [18]. Coastal development, aquaculture expan-
sion and overharvesting for boat building (timber and 
poles), building material and firewood are the primary 
anthropogenic drivers of loss of mangroves [5, 19–21]. 
Natural drivers that drive changes in mangrove compo-
sition and distribution are also important and include 
hydrological dynamics, the impacts of extreme weather 
events and sea-level rise which are projected to increase 
in frequency and magnitude due to global climate 
change, respectively [6, 21]. As climate change mitigation 
has come to the fore of international scientific and politi-
cal discussions [22], there has been an enhanced focus 
on conserving and restoring degraded ecosystems that 
are known to function as carbon sinks [10, 22], through 
mechanisms such as Reducing Emissions from Defor-
estation and Degradation (REDD+) and other United 
Nations Framework Convention on Climate Change 
(UNFCCC) mechanisms increasingly aim to support 
livelihood developments and mitigate climate change 
impacts through Green Climate Fund investments [23]. 
The significance of ‘blue’ carbon processes, pools and 
sinks need to be centrally factored into decision making 
at all scales—from global policy issues on climate change, 
through to resource management at sectoral (e.g. fish-
eries) and national levels, and even as a criterion in the 
selection of prospective Marine Protected Areas [24].

There has been long term interest around “interface” 
mangrove ecosystems that couple upland terrestrial and 

coastal ecosystems, with the shift from documenting 
their zonation and interaction with human use, through 
to increasing work on their biogeochemical cycling. 
Alongi and Mukhopadhyay (2015) estimated that low 
latitude mangrove ecosystems typically store between 
100 and 400 tonnes of carbon per hectare; sequester-
ing and releasing more carbon by area than almost any 
other coastal ecosystem [25]. Africa hosts about 19% of 
the world’s mangroves, yet there are relatively few stud-
ies that have examined the carbon stocks of African 
mangroves [26], and the studies available report great 
differences among sites and amongst the different pools 
of carbon stocks, particularly between the above ground 
carbon (AGC) stored in the trees and the organic carbon 
stored within the sediment-‘soil organic carbon (SOC)’. 
For example, SOC estimates for 1  m depth range from 
122 Mg C  ha−1 in Republic of Congo [27] to 342 Mg C 
 ha−1 in Liberia [26]. In a single estuary in Liberia, total 
ecosystem carbon stocks (AGC + total SOC) varied by 
over fourfold, ranging from 366 to 1485 Mg C  ha1 [28].

In mangroves, high SOC is linked with slow decompo-
sition of organic matter due to waterlogged saline envi-
ronments which impedes microbial degradation [10, 17, 
29, 30]. Differences in SOC can be explained by the dif-
ferences in waterlogging, nutrients and salinity, linked to 
whether mangroves are classified as oceanic, estuarine, 
riverine or interior, and also to salinity/nutrient changes 
related to tidal inundation and seaward distance. Two 
recent reviews on SOC in mangroves pointed out at the 
importance of considering hydrogeomorphological pro-
cesses in distinct coastal environmental settings [31, 32]. 
In Indonesia, Weiss et  al. note the importance of both 
the relative seaward distance and the knowledge of the 
oceanic or estuarine nature of the mangrove ecosystem 
in estimating the SOC stocks [33]. A recent summary of 
carbon stocks data from published data from 190 man-
grove sites showed that lower mean pore water salinity 
(related to mangrove type and seaward distance) also 
affects AGC [28], as in less saline environments more 
carbon is allocated to aboveground biomass than to roots 
[31]. However, only a few available studies from Africa 
report the type of mangroves studied, and none mention 
seaward distance.

Considerable variation in above-ground carbon in 
mangroves (AGC, the part stored in aerial parts of trees) 
has been reported for Africa: from 26 C Mg  ha−1 in 
Guinea-Bissau [34] to 237 Mg C  ha−1 in Cameroon [27] 
(AGC estimated from above ground biomass using a con-
version fraction of 0.47). Differences in AGC estimates 
among sites and countries may be related to structural 
attributes, such as variable stem density (e.g. ranging 
from < 1000 stems  ha−1 in Gabon South to > 35,000 stems 
 ha−1 in Senegal [26] but also to different sampling 
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approaches, including minimum tree diameter sam-
pled [35], or the equation used to estimate tree biomass 
[36]. Waterlogging or salinity, which affects decompo-
sition rates, and therefore nutrients available for plant 
growth, might also explain some of these differences. For 
example, it has previously been predicted that estuarine 
mangroves where there are lower salinities, usually have 
greater aboveground stature [28]. Human interaction and 
harvesting of mangrove for building poles, charcoal pro-
duction and agricultural clearing also has an impact on 
mangrove ecosystem composition [37].

We address four major research questions: do carbon 
stocks differ with increasing seaward distance? Are there 
advantages of using 1  ha plots over smaller vegetation 
plots? What are the effects of using ≥ 5.0 or ≥ 10.0  cm 
diameter thresholds on AGC estimates? And, how do 
AGC and SOC compare to those reported elsewhere 
in Africa? We hypothesized that AGC and SOC would 
increase with increasing seaward distance. We also 
hypothesized that the effects of using ≥ 5.0 or ≥ 10.0 cm 

diameter thresholds on AGC estimates would be highly 
significant, as current mangroves ecosystems are gener-
ally characterised by having numerous small stems due 
to historical and ongoing human use. Through this case 
study, we suggest methods for future mangrove research 
in Africa.

Methods
Study area
This study focused on the estuarine mangroves of the 
Lindi region in Tanzania that currently has approxi-
mately 4500  ha of mangroves, of the 108,000  ha found 
in Tanzania (Fig. 1). Although this areal extent should be 
seen as an estimate, as the area of mangroves is not fully 
known and depends on how these are accounted for; for 
example UNEP-WCMC estimated 127,200  ha, in 2000, 
Francis and Bryson estimated 133,500  ha in 2001 [38, 
39].The average annual temperature in Lindi is 25.7  °C, 
mean annual rainfall is 1200 mm year−1, with a rainy sea-
son that extends from October to June [40]. The coastal 

Fig. 1 a Tanzanian coastline with mangroves highlighted in green; b Close‑up of Lindi estuarine mangroves with study plots (black circles); c Study 
area in Tanzania; d Google satellite image of plots showing the proximity of farming; Mangrove coverage extracted from Bunting et al. [47]
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soils in the region consists of alluvial and sandy soils [41]. 
Mangroves of the study area are supported by the pres-
ence of Lukuledi, Ngurumahamba, Mtange and Mingoyo 
rivers mostly from Rondo catchment with the exception 
of the Lukuledi river which originates from Nachingwea.

Mangrove ecosystems in Tanzania have long been 
exploited by humans. Before and during the colonial 
era, poles and timber were used as building materials for 
boats and houses by Arabic traders [42, 43]. Mangroves 
continue to be exploited for firewood and poles, but large 
timbers requited for boats are no longer available [5, 44]. 
In the study area mangroves are used as source of build-
ing poles for houses, and fuelwood for lime burning to 
create cement [44], as well as being cleared to provide 
space for seaweed cultivation, illegal sand mining and 
salt pan construction for salt making [45, 46]. In Lindi 
mangrove ecosystems, construction of salt pan is mostly 
conducted close to the shore to allow easy and lower 
cost feeding of ocean water to the constructed ponds. 
This is associated with creation of salt pans pathways, 
salt storage areas and huts construction. These activi-
ties have largely been affecting the growth and stocking 
of mangrove species [46]. Similarly, seaweed cultivation 
is mostly practiced close to the shore where ocean water 
is permanently available. Farmers will look for open 
areas or clear mangrove areas, as they do for salt open 
construction, to establish their farms. This intensifies 
mangrove degradation close the shore and hence has an 
implication to carbon storage. This has been the opposite 
for illegal harvest for timber, building poles and firewood 
which is mostly practiced away from the shore for easy 
transport to the desired destinations.

Data collection and analysis of soil samples
Four 1-ha plots were established at 4.3 km, 8.1 km, 11 km 
and 13.5  km along a gradient through the mangrove 
forest from the shore to land (Fig.  1). 1-ha plots were 
divided into 20 subplots of 20 × 20  m [48, 49]. These 
subplots were separated from one another using sisal 
ropes creating visual borders to avoid double measure-
ments of stems. A systematic pattern (North–South) was 
then followed to measure stems in each subplot (Fig. 2). 
In each sub plot, the diameter at breast height (DBH; 
1.3 m), the species and the height were recorded for all 
stems ≥ 10.0  cm. The same variables were recorded for 
smaller stems (≥ 5.0–9.9  cm DBH) in five subplots of 
20 × 20 m (subplots 1, 5, 13, 21 and 25). Stem heights for 
the trees ≤ 10.0 m height were measured parallel to tree 
from the base to the highest point using a pole of known 
height [50]. Heights of the trees > 10  m were measured 
using a laser distance meter (Leica disto). For species 
which were not identified in the field, a voucher speci-
men was collected and taken to the National Herbarium 

in Arusha for further identification. In total, we sampled 
2071 stems ≥ 10.0  cm and 970 stems ≥ 5–9.9  cm. Seven 
species of mangrove were found. Given the homogenous 
nature of the mangrove ecosystem this was deemed to 
capture the extent of any variation and provide insight 
into patterns of above and below ground carbon storage.

In each plot, litter biomass was recorded as follows: 
first, 1  m2 quadrats were established in the corners of 
subplots 1, 5, 21, 25 and at the centre of the sub plot 
13. Litter materials (excluding dead wood) were col-
lected from the five (1 m2) established quadrats and the 
total wet weight was taken. Sub-samples (50%) were 
taken from the whole sample, weighed before packing 
and transported to the lab [51, 52]. The wet combustion 
method was used to estimate percentage organic carbon 
from the dry mass of the litter [53]. A portion (50%) of 
the litter was oven dried to constant weight at 70.0 °C to 
determine the dry mass [54] and grounded to fine pow-
der for total organic carbon determination. The total 
organic carbon for litter was determined using the wet 
combustion procedure as described in Nelson and Som-
mers [55]. The amount of carbon in each sample was cal-
culated as the product of percentage organic carbon and 
dry mass [54].

A pit of 1 m depth was dug 15 m away from each 1 ha 
plot. Due to the challenging environment of the man-
grove ecosystem, soil pits were allocated in such a way 
that samples could be collected up to 1 m without water 
interference, through careful timing of the water tides. 
Soil samples were collected using a metal ring (98.12 cm 
volume) inserted into the sediment in a pit dug from a 
profile at different depths: 0–15 cm, 16–30 cm 31–60 cm 

Fig. 2 1 ha Vegetation plot, showing movement between numbered 
sub‑plots
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and 61–100  cm. Each layer was packed separately, and 
soil samples were transported to the lab, air dried, 
grounded and passed through a 2  mm sieve to remove 
stones and gravel. SOC was determined based on the 
Walkley–Black chromic acid wet oxidation method [56] 
and the results were expressed as the % organic carbon. 
Computation of SOC density was based on soil mass per 
unit area obtained as the product of soil volume and soil 
bulk density determined from the bulk density samples in 
(g/cm3).

AGC estimations and data analysis
Above ground biomass of all stems ≥ 5.0 cm DBH (AGB, 
Mg  ha−1) was computed using different biomass equa-
tions, including generic equations derived by Komiyama 
et al. and Chave et al. [57, 58] (see Additional file 1). We 
report here the values of AGB and below ground biomass 
(BGB) using the multispecies equations developed by 
Njana et  al. as these equations were derived using spe-
cies from coastal regions in Tanzania, including Lindi 
[36]. AGC and BGC (Mg C  ha−1) stocks were determined 
by using a carbon fraction of 0.47 and 0.39, respectively 
[59–61]. We computed AGC using stems ≥ 10.0  cm 
(named AGC 10), and also using stems ≥ 5.0  cm (named 
AGC). We assessed the intra-plot variation in AGC 
by randomly sampling smaller areas (400  m2, 1600  m2, 
3600  m2 and 6400  m2) of each 1  ha plot. The standard 
deviation relative to sampling the full 1 ha was calculated 
using a bootstrapping approach of 10,000 iterations. For 
each 1  ha plot we computed stem density (stems  ha−1), 
percentage of small stems (those 5.0–9.9 cm DBH), basal 
area (in  m2  ha−1), mean diameter (cm), mean height (m), 
species’ richness (number species present in the plot), 
species’ dominance (in terms of basal area), and species’ 
contribution to plot-level AGC (in percentage). Statisti-
cal analysis was carried out using R Studio (version 3.6.0). 
Pearson correlation coefficient was used to determine 
correlation between seaward distance and AGC or SOC. 
Paired t-tests were used to compare significant differ-
ences between AGC and AGC 10.

To compare our findings with those reported elsewhere 
across Africa, we carried out a literature review searching 
for mangrove carbon estimates across Africa.

Results
Above ground carbon stocks
AGC ranged between10.9 and 54.9 Mg C  ha−1, the mean 
being 26.8  Mg C  ha−1 (Table  1). AGC was not signifi-
cantly positively correlated with seaward distance (Pear-
son’s correlation,  r2 = 0.4, p = 0.3, df = 2), nor was BGB 
(Pearson’s correlation,  r2 = 0.4, p = 0.4, df = 2). Stem 
density, basal area, mean diameter and mean height 
increased with increasing distance to the sea (Table  1). 

The percentage of small stems (5.0–9.9  cm DBH) was 
greatest closest to shore (58%, see Table  1). Using a 
5.0 cm diameter threshold significantly affects AGC esti-
mates (paired t-test, df = 3, p-value = 0.02), although in 
plots 2 and 4 there was less than a 10% difference in AGC 
& AGC 10. The contribution of litter to the total carbon 
stocks was negligible in all plots (Table 1). Species’ domi-
nance, and contribution to AGC changed with distance 
from the sea (Fig. 3). There were no differences in species 
richness if a 5.0 cm or a 10.0 cm diameter threshold was 
used. Using only small plots to quantify AGB will result 
in higher uncertainty to represent the larger 1  ha area 
(Fig. 4). The trend in decreasing uncertainty with larger 
plot area is similar for all four plots.

Soil organic carbon stocks
Soil organic carbon for 0–1 m depth ranged from 153.73 
to 483.63  Mg C  ha−1, the mean being 301.7  Mg C  ha−1 
(Fig.  5). Contrary to AGC, SOC was significantly nega-
tively correlated with distance towards the sea (Pearson’s 
correlation,  r2 = 1.0, p < 0.05, df = 2). SOC in each layer 
(0–15 cm, 15–30 cm, 30–60 cm and 60–1 m) decreased 
with increasing distance from the sea (Fig. 5).

Carbon change with distance to the sea
Overall carbon stocks were significantly negatively cor-
related with distance to the sea (Pearson’s correlation, 
 r2 = 0.9, p < 0.05, df = 2), with 510.1 Mg C  ha−1 in plot 1, 
closest to the sea and 251.9 Mg C  ha−1 in plot 4, furthest 
from the sea (Table 1).

Comparison with other studies in Africa
The literature review of available mangrove studies across 
Africa is presented in Table 2.

Discussion
Above ground carbon stocks
AGC increased with increasing seaward distance, as has 
been reported in Qatar and Micronesia and in world-
wide reviews [57, 62]. However, the correlation between 
AGC and seaward distance was not significant, possibly 
due to the low number of plots or because of the lower 
AGC value in plot 3 which may have experienced greater 
exploitation pressure. Plots closest to shore are likely to 
experience greater tidal inundation and salinity, lower 
decomposition rates, and therefore, less nutrients being 
available for tree growth [57]. In Lindi region, they could 
also suffer greater anthropogenic pressures close to the 
shore, for example from seaweed farming or salt pans. 
With increasing seaward distance, increasing mean diam-
eter and height at plot level, stem density and basal area, 
and a change in species composition and abundance, 
translated into increased AGC.
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There was a difference using a 5.0 or 10.0  cm diam-
eter threshold, which agrees with insights from savan-
nah ecosystems [63] but differs from flooded forest and 
lowland terra firma rainforests [35, 64], however the dif-
ference was particularly small when compared to SOC 
and the total carbon stock. Therefore, for an assessment 
of carbon storage in mangrove ecosystems with numer-
ous stems > 10.0 cm, we recommend a 10.0 cm diameter 
threshold, which is less time-consuming during field-
work and yields good results. Note that numerous studies 
across African mangrove ecosystems have used smaller 
diameter thresholds (Table 2). The finding that using only 
small plots to quantify AGB will result in higher uncer-
tainty to represent the larger 1 ha area is concurrent with 
other studies [65].

Overall, our estimates of AGC (10.9–54.9  Mg C 
 ha−1) are similar to those reported elsewhere in Tanza-
nia (33.5 and 40.5  Mg C  ha−1, Table  2), but lower than 
for example in the Democratic Republic of Congo [27]. 
This could be attributed to the combination of: (i) differ-
ent methods used to sample AGC (Table 2), (ii) different 
environmental characteristics (e.g. ocean vs estuarine, 
different rainfall patterns, impacts of cyclones), but par-
ticularly important is likely to be (iii) the long and per-
vasive history of exploitation of mangroves in Tanzania 
[42, 43]. The satellite images of the plots (Fig. 1) indicate 
that there is substantial anthropogenic pressure in the 
area. The lower value of AGC, suggests that that current 
AGC quantified is significantly below the potential and 
could be significantly increased with appropriate control 

Fig. 3 Contribution to plot level above ground carbon (AGC) (kg) of the different species found in each plot (there is increasing seaward distance 
from a–d). SA: Sonneratia alba; AM:Avicennia marina; RM: Rhizophoramucronata; BG:Bruguieragymnorhiza; LR: Lumnitzera racemose; CT: Ceriopstagal; 
XG: Xylocarpusgranatum 
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of mangrove timber harvesting and clearing combined 
with future management of the mangrove ecosystem 
that focuses on maintaining integrity of the sedimentary 
environment.

Soil organic carbon stocks
SOC stocks decreased with increasing distance from the 
sea, which is different from studies in Micronesia, where 
SOC increased with increasing seaward distance because 

of greater soil depth [66]. Donato et al. found no change 
in SOC with increasing seaward distance in estuarine and 
oceanic mangroves in the Indo-Pacific—but all their plots 
were within 200  m from the seaward edge. Soil erosion 
and soil depth are other important factors determining 
SOC along seaward gradients [20]. In our study area the 
first plot we sampled was 4 km from the exposed shore-
line where soil erosion was not an issue. Beyond the zone 
of soil erosion, plots closest to the shore, which experi-
ence greater tidal inundation (and salinity), have slower 
decomposition rates, and therefore, higher SOC stocks. 
Mangrove’s sediments can store high amounts of carbon 
due to complex root structures, high sedimentation rates 
and waterlogged conditions which impedes microbial 
degradation and slows decay [16, 25].

SOC stocks reported in this study are significantly 
higher than other studies in Tanzania (which only sam-
pled 60  cm depth [67]), but they are within the range 
reported by other studies in Africa (Table 2). Similar to 
AGC, there have been variable approaches taken to sam-
ple SOC, using variable depths. Given the high amount 
of carbon stored in soils (as SOC), we recommend sam-
pling mangrove sediment at least up to 1 m. Jones et al. 
reported about 100  Mg C  ha−1 in the sediment layer 
1–1.5  m in Madagascan mangroves [21], which sug-
gests that sampling to greater depths would yield a true 
assessment of the extent of the SOC. Kauffman et al. also 

Fig. 4 Relative AGB as a function of plots size. The error bars denote ± 1.96 × standard deviation calculated using a bootstrapping approach of 
10,000 iterations of randomly sampling 400 m2, 1600 m2, 3600 m2 and 6400 m2

Fig. 5 Soil carbon stocks across the four plots sampled along a 
seaward gradient
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highlighted the importance of including soil profiles > 1 m 
depth in carbon stock estimates [28]. Indeed, palaeoeco-
logical investigations from Tanzanian mangrove systems 
clearly demonstrate that the sediment layer extends up to 
c. 4.0 meters [68, 69]; thus the high SOC value currently 
recorded down to 1 m is likely to be much greater if the 
full sediment system is assessed and the true value of 
managing the mangrove SOC realised by targeting above 
ground interventions to minimise any below ground dis-
turbance. Despite its importance SOC (in addition to lit-
ter) was not included in Tanzania National FREL due to 
limited reliable data (URT, 2017). As SOC stocks were 
much greater than AGC, even further from the seashore 
where AGC increased, we recommend focusing on more 
extensive sampling of SOC so that the major repositories 
of carbon though soils can be quantified and fed into ini-
tiatives such as REDD+ and associated MRV systems for 
sustainable result-based forest conservation.

Implications for Tanzania
In recent years there has been a drive to include carbon 
stocks in mangroves in reduced carbon emission tar-
gets, as they provide the potential to help mitigate and 
manage climate change through reducing greenhouse 
gas emissions [9, 70]. Managing mangroves to maximise 
carbon sequestration and storage that can mitigate cli-
mate change and meet national carbon emission targets 
first requires an accurate method of determining car-
bon extent [71]. We document here the importance of 
the mangrove above and below ground carbon store that 
when combined makes the ecosystem one of the most 
important on the planet for regulating global carbon 
cycles. Clearly mangrove conservation offers the poten-
tial for low cost options for reducing  CO2 emissions [9, 
72]. With the growing interest in developing and imple-
menting market-based mechanisms such as carbon off-
sets and programs such as the Reduced Emissions from 
Deforestation and Degradation (REDD+) [70, 73], quan-
tifying carbon stocks of mangrove forests at national, 
regional and continental levels is key [74], to national and 
local participating in climate change mitigation strate-
gies such as REDD+ [71, 75]. Clearly, mangrove eco-
systems have extensive capacity to store carbon, along 
with being one of the most productive ecosystems [76] 
in terms of net primary production. This contribution 
into international climate change mitigation is only one 
economic contribution with mangroves ecosystems sup-
porting and providing economic security for local liveli-
hoods in terms of fisheries support, coastline protection, 
pollution buffering, and water and sediment stabilisa-
tion [9, 20, 77]. Mangrove ecosystems have a long his-
tory of human exploitation and have recently undergone 
a 30–50% decline in area extent over the past 50  years 

and are expected to fully functionally disappear in under 
100 years [78]. There is an urgency to assess the full role 
of mangrove ecosystems in climate change mitigation [7]; 
and ensure that the future contribution of mangroves to 
provide international and local ecosystem services can be 
maximised.

Conclusion
This study has shown that seaward distance has an 
important effect on both AGC and SOC stocks in the 
Lindi region of Tanzania. It has also highlighted that 
mangrove carbon studies available for Africa do not 
describe type of mangrove (estuarine, oceanic), or con-
sider seaward distance, which makes comparisons across 
sites challenging [20]. Although more research on the 
environmental factors behind seaward distance are 
needed (e.g. salinity, flooding tidal periodicity, nutrients 
and soil porosity), we highlight that seaward distance 
should be reported in mangrove studies in the continent. 
We also recommend focusing on trees > 10.0  cm diam-
eter, and sampling soils to greater than 1 m depth which 
would provide a more complete assessment of the man-
grove carbon store. Using large permanent sample plots, 
which reduce sampling uncertainties [79], and sampling 
tree height in the field, which is known to improve long 
term AGC dynamic estimates [79], are also advised.

Overall, mangroves in Lindi store a substantial amount 
of carbon, particularly, in the sediment. Once disturbed, 
SOC cannot be regained over meaningful human time-
scales because mangrove sediment deposits take thou-
sands of years to form [17, 68, 69]. Because SOC is 
protected by the above ground vegetation, mangrove tree 
conservation is of key importance. The highlighted limi-
tations of SOC and AGC limitations in mangrove eco-
system in Tanzania call for increased efforts to integrate 
mangroves into Tanzanian REDD+ future process such 
as updated Forest Reference Emission Level Assessment 
(FREL) [80]. Such efforts will enable Tanzania—and other 
African nations—to fully benefit from carbon offsetting 
national and international schemes.
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