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Abstract 

Background  In Ethiopia, highland bamboo has been cultivated in various niches: farmlands, riverbanks, woodlot 
boundaries, and homesteads, and agroforestry systems. However, the biomass and carbon storage of potential of 
bamboo forests across niches is not well characterized in Ethiopia. Therefore, this study was conducted to estimate 
the biomass and carbon storage potential of highland bamboo plantations in northwestern Ethiopia. To this end, 
a total of 60 circular plots measuring 100 m2 with a radius of 5.64 m were randomly established on the homestead, 
woodlot, and riverbank plantation niches to conduct the inventory. The biomass storage of bamboo was calculated 
based on previously published allometric equations. Biomass and carbon stock variations among age-classes and 
niches of bamboo forests were analyzed using analysis of variance (ANOVA) and subsequent pairwise means compari-
sons of carbon stocks among niches were performed via post hoc Tukey test at p < 0.05.

Results  Results showed that the mean aboveground biomass (AGB) ranged from 150.18 – 191.42 Mg ha−1 in the 
entire niches. The highest amount of AGB was stored in the homestead niche (191.42 Mg ha−1) followed by the 
woodlot (180.11 Mg ha−1) and riverbank niche (150.17 Mg ha−1), respectively. The highest carbon stock (111.56 Mg 
C ha−1) was found in the homestead niche while the smallest amount was recorded in the riverbank niche 
(87.52 Mg ha−1). The homestead bamboo plantation has the highest biomass storage due to the application of 
manure and natural fertilizer, regular harvesting and management of culms, and protection from illegal harvesting 
and grazing.

Conclusion  This study highlights the importance of bamboo plantations in climate change mitigation. Hence, 
bamboo plantation should be promoted; and natural resource management and forestry departments of the govern-
ment, Universities, research centers, the International Bamboo and Rattan Organization (INBAR), and other partners 
should work with local communities to expand bamboo plantation on their homesteads and degraded lands.
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Background
Today, climate change is one of the most pressing chal-
lenges of humanity. Consequently, scientists, resource 
managers, and policymakers have paid utmost attention 
to climate change mitigation [1, 2]. In this regard, car-
bon (C) sequestration and storage in forest ecosystems 
has been identified as the vital mitigation strategy for the 
changing climate [3–5]. Second, only to the oceans, for-
ests play an essential role in the C cycle, accounting for 
a more significant proportion of C exchange between 
the atmosphere and terrestrial biosphere than other land 
biomes, thereby contributing to climate change mitiga-
tion [6, 7]. Forest ecosystems store more than 80% of all 
terrestrial aboveground C and more than 70% of all soil 
organic carbon [7, 8].

Bamboos are important vegetation resources that are 
mostly found in tropical and sub-tropical regions of Asia, 
Africa, and Latin America [9–11], covering 35 million 
hectares globally [12] and accounting for about 1.0 per-
cent of the world’s forest area [13]. Because of their rapid 
growth and ease of propagation, bamboos are unique in 
their ability to meet a wide range of ecosystem services 
[1, 2, 14–16]. Bamboo is one of the fastest-growing plants 
[17], with daily growth rates ranging from 30 to 100 cm 
and harvesting cycles ranging from 3 to 5  years, com-
pared to 10–50  years for most timber species [18–21]. 
Plants sequester CO2 during photosynthesis, playing an 
important role in climate regulation. In this regard, bam-
boo has a unique capacity to absorb CO2 from the atmos-
phere and functions as an important C sink [22–25]. 
Bamboo forests have been found to have higher C storage 
per hectare than fast-growing tropical and sub-tropical 
trees under comparable conditions due to their rapid 
growth and short harvesting cycle [21, 25–27].

In recent decades, bamboo has become a globally 
important biomass resources in many parts of the world 
[5, 28, 29]. Bamboo’s recent recognition into volunteer 
carbon finance mechanisms has increased its attractive-
ness as a plantation species [30]. Bamboo forests can be 
planted in degraded tropical forests because they are an 
important component of most tropical forest ecosystems 
and are adaptable to adverse site conditions [1, 31]. While 
contributing to environmental sustainability, they also 
provide income as well as a range of goods and ecosys-
tem services for rural households, thus, contributing to 
food security and poverty eradication [32]. Bamboo can 
be grown in agroforestry systems on agricultural lands 
and farms, in rural landscapes, and along roads, rivers, 
human settlements, and trees in and around cities [33]. 
Bamboo-based agroforestry has the potential to improve 
production, sustainability, and resource conservation 
[34]. Many useful bamboo species may coexist with 
trees in the same biological niche, making them suitable 

for agroforestry [33, 35, 36]. Bamboo outperforms most 
tree species due to its fast growth. Bamboo, for example, 
grows three times faster than eucalyptus and matures in 
just 3 years, so large-scale efforts to promote bamboos in 
agroforestry systems are underway [35].

Ethiopia owns about 67% of Africa’s and 7% of the 
world’s total bamboo forest areas, making it one of Afri-
ca’s largest bamboo resource bases [37–39]. The country 
has two indigenous bamboo species: the lowland bam-
boo, Oxytenanthera abyssinica (A. Richard) Munro, and 
the highland bamboo, Oldeania or Yushania alpina (K. 
Schumann) Lin, with an area coverage of more than one 
million ha [37]. These species are indigenous to Ethiopia 
and endemic to Africa and are only found in the sub-
Saharan region [40]. Unlike lowland bamboo, highland 
bamboo is commonly cultivated and managed by farmers 
in various agroforestry systems [41]. It grows in differ-
ent niches, including farmland patches, riverbanks, farm 
boundaries, roadsides, homesteads, and even urban areas 
at an elevation ranging from 2,200 to 4,000 m [42].

A thorough understanding of carbon storage patterns 
in forest ecosystems is crucial for forest management to 
slow the rate of climate change [28]. The distribution of 
carbon stored in plant biomass and the rate of carbon 
sequestration within forest landscapes can be variable 
at local scales [43]. Because specific niches or environ-
mental surroundings affect plants’ growth and perfor-
mance [44, 45]. Local forest carbon dynamics are related 
to biotic and abiotic productivity drivers such as species 
composition and forest diversity, as well as abiotic pro-
ductivity drivers such as soil type, topographic position, 
aspect, and elevation [28, 46, 47]. However, despite the 
fact that bamboo-based agroforestry has been practiced 
in different plantation niches, the biomass and carbon 
storage of potential of bamboo across niches is not well 
characterized in Ethiopia. Indeed, some researches on 
the productivity and stand structure of highland bamboo 
along plantation niches has previously been undertaken 
[48, 49]. However, they concentrated on the productiv-
ity of bamboo in niches while overlooking its function in 
carbon sequestration and thus climate change mitigation. 
With this backdrop in mind, this study was conducted 
to estimate the biomass and carbon storage potential of 
highland bamboo (Oldeania alpina) forests over planta-
tion niches in northwestern Ethiopia.

Materials and methods
Description of the study area
The study was conducted in Banja and Guagusa-shikudad 
districts of northwestern Ethiopia. The study districts are 
located between 10° 43′ 45’’ to 11° 2′ 30’’ N and 36° 41′ 
20’’ to 37° 5′ 50’’ E, with a total area of 7964.5 km2. The 
districts are situated 490 km from Addis Ababa and are 
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parts of the northwestern highlands of Ethiopia (Fig. 1). 
The elevation ranges between 1700 and 3000  m. The 
topography is typical of volcanic landscapes, with vol-
canic rocks deeply incised by streams, resulting in the 
current ragged and undulating landforms.

The soils of the study areas are primarily formed from 
volcanic parent materials that are reddish or brown, 
drain freely, and have a medium to heavy texture [50]. 
Andisols, nitosols, and cambisols are the three major soil 
types [51]. There are both perennial and seasonal rivers 
and streams that flow over the study districts. Accord-
ing to National Meteorology Agency climate data, the 
districts receive the majority of their rainfall during the 
summer season (June to September) and receive approxi-
mately 2300 mm of mean annual rainfall while the mean 
annual temperature ranged between 11 and 24  °C. Like 
most Ethiopian highlands, the major land use-land covers 
of the study area are agricultural land, grazing/pasture 
land, forest, and settlement.

The study area contains a variety of vegetation 
resources that are classified as dry Afromontane forests 
[52]. Albizia gummifera, Croton macrostachyus, Pru-
nus africana, and Apodytes dimidiata are the dominant 
species. In elevation zones 1850–2100  m, Albizia gum-
mifera and C. macrostachyus dominate. P. africana and 
A. dimidiata found between 2100 and 2350  m, while 
Juniperus procera and Ekebergia capensis found sparsely 

with undergrowth shrub species at higher altitudes [53]. 
The hallow-stemmed Afro-alpine or mountain bamboo 
[Yushania alpina or Oldeania alpina (K. Schum.) W.C. 
Lin], locally known as Kerkha, is one of the main vegeta-
tion types grown in the study area [54]. It is a monopo-
dial/leptomorphic rhizome bamboo species growing in 
the south, southwest, central, and northwestern high-
lands of Ethiopia [38].

Farmers in the study area grow and cultivate highland 
bamboo as an agroforestry system in various niches such 
as homesteads, woodlots, riverbanks, farm boundaries, 
and roadsides. They harvest bamboo culms for a variety 
of socioeconomic uses, including a source of income, 
furniture, household utensils, and so on. The bamboo 
plantations in the homestead niche are relatively well-
managed, with the use of manure and natural fertilizer, 
proper harvesting, and protection from illegal harvesting 
and livestock. Bamboo culms in the woodlot, roadside, 
and riverbank niches, on the other hand, are subjected to 
illegal harvesting and free grazing, resulting in decreased 
culm density and productivity.

Sampling and data collection techniques
The four bamboo growing sites (villages) namely, 
Gashana-akayeta, Kesa-chewsa, Jibayeta, and Ageza-
garda, were selected purposively for the inventory based 
on their forest coverage and accessibility. A total of 60 
circular plots (5 plots × 3 niches × 4 sites) measuring 
100  m2 with a radius of 5.64  m were randomly estab-
lished on the homestead, woodlot, and riverbank planta-
tion niches to carry out the inventory. Circular plots are 
more efficient than square or rectangular plots because 
the actual perimeter of the plot is smaller; thus, the num-
ber of bamboo culms on the edge is limited [55]. A total 
of 20 culms were selected at random from each plot for 
each age group to collect stand structure and biomass 
data in bamboo forests (Additional file  1). In each plot, 
the diameter at breast height (DBH) and height (H) were 
measured, and the bamboo age (A) was determined using 
its morphological features [56, 57]. Culms in each plot 
were classified and counted based on their ages. A caliper 
was used to measure culm’s diameter at 1.3 m height, and 
a graduated stick (bamboo culm marked at 1 m intervals) 
was used to measure culm’s height.

Stand structure and biomass carbon stocks estimation
The stand density of the highland bamboo was calculated 
following as follows [55]:

Likewise, the basal area was calculated as:

Density of culmsha − 1 =

Number of culm ∗ 10, 000

Plotarea(m2)

Fig. 1  Map of the study area



Page 4 of 10Jember et al. Carbon Balance and Management            (2023) 18:3 

Basal area (BA) =  π∗DBH2

4
       Where, DBH is the diam-

eter at the breast height of culms and π (pi) = 3.14.
The aboveground biomass (AGB) storage of high-

land bamboo forests was estimated using an allometric 
model developed by Abebe et al. [58] in the Masha For-
est of Southwestern Ethiopia. The model was developed 
by harvesting randomly selected 1–2, 3–4, and 5–6-year-
old culms of highland bamboo in Ethiopia. A total of 42 
culms were harvested from seven circular plots (100 m2) 
based on age and diameter. The mean DBH of the sam-
pled culms was 5.68 (1–2 year), 5.41 (3–4 year), and 5.09 
for 5–6-year-old culms. The model has a robust predic-
tive power with the coefficient of determination (adj. R2) 
in the range between 0.856 and 0.925. In this model, the 
relationship between AGB and DBH was predicted by a 
simple allometric function:

where, Y = aboveground biomass and a and b are 
parameters.

Then, the total aboveground biomass (TAGB) was cal-
culated by summing up of aboveground biomass of each 
age class as follows: TAGB = AGB1 + AGB2 + AGB3 . 
The aboveground (AGB) to belowground biomass 
(BGB) ratio of 4:1 (0.25) [59] was used to estimate 
the BGB. The BGB was then computed as follows: 
BGB = AGBx0.25 . Then, total belowground biomass 
TBGB = BGB1 + BGB2 + BGB3 . Finally, the C stor-
age and CO2 sequestration potential of the high-
land bamboo bamboo forests were calculated from 
total biomass (TB) (total aboveground and below-
ground biomass), respectively, as follows [60]: 
Carbon(C) = Cfraction(0.47)xTB; andCO2 = Cx3.67.

Statistical analysis
Data were organized in an excel spreadsheet and univari-
ate statistics were calculated to determine stand struc-
ture and biomass among three niches of bamboo forests 
(Additional file 1). The normality of data distribution was 
checked using Shapiro–Wilk Test before analysis. Bio-
mass and carbon stocks variations among age classes and 
niches of bamboo forests were analyzed using analysis 
of variance (ANOVA) in R statistical software and sub-
sequent pairwise comparisons of means of biomass and 

Y = axDBHb

AGB1
(

1−2 years
)

= 0.259 x DBH2.098

AGB2
(

3−4 years
)

= 0.129 x DBH2.577

AGB3
(

5−6 years
)

= 0.165 x DBH2.237

carbon storage among niches of bamboo forests were 
performed via post hoc Tukey test at p < 0.05.

Results
Stand structure of the highland bamboo forests 
in the study area
The culm density of the highland bamboo stand showed 
significant variations across plantation niches. The 
highest stand density was recorded in the homestead 
(27,945  culms ha−1) followed by woodlot (22,775  culms 
ha−1) and riverbank (20,375  culms ha−1) niches. Like 
culm density, there was variation in the clump stocking 
among bamboo niches. The clump stocking in the stands 
ranged from 1,562 to 1,885  clumps ha−1. The woodlot 
represented the highest clump stock (1,885 clumps ha−1), 
while the homestead shared the smallest clump density 
(1,562 clumps ha−1). The clump stock was inversely pro-
portional to the culm density. For example, the highest 
culm density (22,775 culms ha−1), but the lowest clump 
stock (1,562  clumps ha−1) was observed in the home-
stead niche. In terms of culm age composition, 3–4-year-
old culms were the most common, while 5–6-year-old 
culms represent the smallest proportion in all plantation 
niches (Table 1).

The 1–2-year-old culms had the highest thickness 
(DBH) in all niches. In contrast, 5–6-year-old culms 
had the lowest DBH value. The bamboo forests of the 
homestead niche had the thickest culms (6  cm), while 
the thinnest (5.5  cm) was observed in the river basin 
bamboo forest (Table  1). During field observations, it 
was understood that the predominance of the thickest 
bamboo culms over the homestead niche was associated 
with the application of natural fertilizers like cow dung 
and mulching. Regarding, the total basal area (BA), the 
homestead niche (70.86  m2  ha−1) covers a maximum 
area followed by woodlot (67.05 m2 ha−1) and river basin 
niches (60.54  m2  ha−1) in the bamboo forests. The fast-
est-growing nature of the highland bamboo revealed that 
a total basal area achieved a 73.5% of size increment at 
the age class of 1–2 and 3–4  years old from the entire 
growth life in the three niches. The analysis of variance 
(ANOVA) showed that there existed a significant differ-
ence between the total basal area of the homestead and 
river basin niches at p < 0.05 (Table 1).

Variations of aboveground biomass of the highland 
bamboo at age classes
The pairwise mean AGB comparisons via post hoc Tukey 
test exhibited significant differences among the age 
class of bamboo in homestead and river basin niches at 
p < 0.05. In contrast, there was no significant difference 
in aboveground biomass of 1– 2-year-old (AGB1) bam-
boo culms among niches. The aboveground biomass 
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stored by 5–6-year-old (AGB3) was lower than 1–2 and 
3–4-year-old bamboo culms age of the highland bamboo 
in the three niches and showed significant difference at 
p < 0.05. The highest aboveground biomass was found in 
the 3–4-year-old bamboo culms of the plantation niches 
(Table 2).

Variations in total biomass of the highland bamboo forests 
across plantation niches
The total aboveground biomass ranged from 150.18 
to 191.42  Mg  ha−1 in the entire niches. The high-
est amount of AGB was stored in the homestead 
niche (191.42  Mg  ha−1) followed by the woodlot 
(180.11 Mg ha−1) and riverbank niche (150.17 Mg ha−1), 
respectively. The total aboveground biomass stored 
between the homestead and the woodlot didn’t show a 
significant difference (p < 0.05). However, the total above-
ground biomass accumulated between the homestead 
and river bank niches; and woodlot and river bank niches 
showed a significant difference (p < 0.05) (Table 3).

Carbon stocks and sequestration potential of the highland 
bamboo forests
Results showed that the mean biomass carbon of the 
bamboo forests ranged from 87.52 to 111.56  Mg C 

ha−1 in the entire niches. The highest carbon stock 
(111.56 Mg ha−1) was found in the homestead niche while 
the smallest amount was recorded in the riverbank niche 
(87.52  Mg  ha−1). A total of 21.55% more carbon stocks 
were accumulated in the homestead niche than in the riv-
erbank niche. However, the carbon stock potential of the 
homestead and woodlot niches didn’t show a significant 
difference at p < 0.05 (Table 4).
Discussion
Stand structure of highland bamboo forests in the study 
area
Results show that highland bamboo plantations of the 
present study area have significant variations in both 

Table 2  Tukey’s pairwise comparisons of AGB among age class of highland among plantation niches

Number 1, 2 and 3 refer to age class 1–2, 3–4, and 5–6, respectively

AGB aboveground across niches, RB Riverine bamboo, WL woodlots and HS Homestead

HSAGB1 HSAGB2 HSAGB3 RBAGB1 RBAGB2 RBAGB3 WLAGB1 WLAGB2 WLAGB3

HSAGB1 0.9689 0.000117 0.0348 0.01354 1.03E-05 0.8856 1 2.85E-05

HSAGB2 1.606 1.04E-05 0.000473 0.000152 1.03E-05 0.2001 0.9284 1.03E-05

HSAGB3 6.667 8.273 0.8589 0.9548 0.0349 0.02863 0.000224 1

RBAGB1 4.554 6.161 2.113 1 0.000118 0.6902 0.05908 0.691

RBAGB2 4.957 6.563 1.71 0.4028 0.00035 0.492 0.02452 0.855

RBAGB3 11.22 12.83 4.553 6.666 6.263 1.03E-05 1.03E-05 0.0825

WLAGB1 2.026 3.632 4.641 2.529 2.932 9.194 0.9435 0.01057

WLAGB2 0.248 1.854 6.419 4.306 4.709 10.97 1.777 5.56E-05

WLAGB3 7.081 8.688 0.4145 2.527 2.124 4.138 5.056 6.833

Table 3  Analysis of variance (ANOVA) of AGB of highland among plantation niches and age groups

Different letter indicates significance difference while similar letter showed no significant difference of biomass among niches at p < 0.05

Number 1, 2 and 3 refer to age class 1–2, 3–4, and 5–6, respectively

AGB aboveground biomass, TAGB Total aboveground biomass across niche, TBGB total belowground biomass, RB Riverine bamboo, WL woodlots and HS Homestead

Niche Biomass storage

AGB1 (Mg ha−1) AGB2 (Mg ha−1) AGB3(Mgha−1) TAGB (Mg ha−1) TBGB (Mg ha−1)

RB 56.26 ± 2.49 55.20 ± 3.54 38.72 ± 2.71 150.18 ± 7.58b 36.04 ± 1.82

WL 62.92 ± 1.78 67.59 ± 1.88 49.61 ± 2.07 180.12 ± 4.29a 43.23 ± 1.03

HS 68.25 ± 2.43 72.47 ± 3.29 50.70 ± 2.92 191.42 ± 7.63a 45.94 ± 1.83

Table 4  Carbon stock and CO2 sequestration potential of 
highland bamboo forests among plantation niches

Different letter indicates significant difference while similar letter showed no 
significant difference of biomass and carbon stocks among niches at p < 0.05

TB Total biomass, CS carbon stocks

Niche TB (Mg ha−1) CS (Mg ha−1) CO2 seq. (ha−1)

RB 186.22 ± 9.40b 87.52 ± 4.42b 321.21 ± 16.21

WL 223.35 ± 5.32a 104.97 ± 2.50 a 385.25 ± 9.17

HS 237.36 ± 9.46a 111.56 ± 4.45 a 409.42 ± 16.33
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clump and culm density. The homestead niche had the 
highest culm density (27,945 culm ha−1), while the river 
basin niche had the lowest (20,375 culm ha−1) density of 
culm. Conversely, the lowest clump density (1,562 clumps 
ha−1) was found in the homestead while the highest den-
sity of clump (1,885  ha−1) was recorded in the woodlot 
plantation. The highest culm density in the homestead 
niche is attributed to better management of bamboo 
stands as they grow in farmers’ vicinity.

Compared to the present study, a much lower density 
of 4374 culms ha−1 from Cameron [61], and 6267 culms 
ha−1 from Ghana was reported for the lowland bamboo 
(O. abyssinica) [27], while 8840 culms ha−1 was reported 
for highland bamboo (O. alpina) from Ethiopia [59]. 
Comparable densities of 20,467 culms ha−1 were reported 
by Mulatu and Fetene [48] and 20,748 culms ha−1 Nigatu 
et  al. [49] for highland bamboo in Ethiopia. However, 
higher density of culms is reported for the S. dullooa 
(32,376 culm ha−1), P. polymorphum (43,000 culm ha−1) 
and M. baccifera (39,075 culm ha−1) from India [57]. Var-
iations in bamboo stand density can be attributed to spe-
cies differences, tending operations, harvesting intensity, 
and site conditions.

Biomass storage among age class and plantation niches
Results indicate that the matured bamboo culms 
(3–4-year-old) contributed the highest biomass, while 
old culms (5–6-year-old) stored the lowest biomass. The 
significant portion of the biomass (> 72%) was found in 
the young (1–2-year-old) and matured bamboo culms in 
the three niches. Most of the old culms were harvested in 
the stands of the studied plantation niches. In contrast, 
Embaye et  al. [59] reported that old culms were domi-
nant in the unmanaged natural bamboo stands of Masha 
Forest in Ethiopia. In this regard, studies indicate that 
bamboo management has a greater impact on biomass 
distribution among age classes, where culms of each age 
class have an average biomass distribution in well-man-
aged bamboo [62].

The present study found that the total biomass 
stored by bamboo forests varied across the planta-
tion niches. The homestead niche stored the high-
est biomass (237.36  Mg  ha−1) followed by the woodlot 
(223.35  Mg  ha−1) and riverbank (186.22  Mg  ha−1), 
respectively. The highest biomass storage by the home-
stead bamboo plantation is due to the application of 
manure and natural fertilizer, proper harvesting, and 
management of culms, and protection from illegal har-
vesting and livestock. The bamboo culms in the woodlot 
and riverbank niches, on the other hand, are subjected to 
illegal harvesting and grazing, resulting in reductions in 
culm density and productivity.

Compared to previous studies, our result is much 
higher than the reported values of 100  Mg  ha−1 above-
ground biomass [63]; 110  Mg  ha−1 [59]; 99  Mg  ha−1 
[48], and 108  Mg  ha−1 [49] for O. alpina, and 154.3 – 
185.1 Mg ha−1 for O. abyssinica [2] from Ethiopia. Vari-
ations in bamboo biomass storage could be explained by 
changes in tending operations, harvesting intensity, and 
site conditions.

Carbon stock and CO2 sequestration potential of highland 
bamboo forests
The present study found that the total biomass carbon 
stored by bamboo forests varied across the plantation 
niches. The total biomass C stored by bamboo forests was 
the highest in the homestead (111.6 ± 4.4  Mg  C  ha−1), 
while the riverbank niche stored the lowest amount of 
carbon (87.5 ± 4.4  Mg  C  ha−1). The total biomass car-
bon stored by the studied bamboo forests (87.5 ± 4.4 – 
111.6 ± 4.5  Mg C  ha−1) is considerably higher than the 
reported values of 47 Mg C  ha−1 [63], 50.76 Mg C  ha−1 
[49], and 51.7 Mg C ha−1 [59]. Similarly, lower values of 
72.5–87  Mg  C  ha−1 [2] for O. abyssinica was reported 
from Ethiopia.

By and large, the bamboo forests of the study area 
sequester about 321.21–409.42 tons of CO2 eq. in their 
biomass. Hence, these bamboo forests play a significant 
role in absorbing a significant amounts of atmospheric 
CO2 and play a great role in mitigating climate change. 
Bamboo management in all plantation ecosystems would 
increase the size (diameter) of bamboo culms, accumu-
lating more biomass and sequestering more carbon. 
Moreover, if harvested bamboo culms are turned into 
durable products such as permanent construction mate-
rials, furniture, art, and so on, bamboo could provide an 
important and long-term C sink.

In this study, we were unable to develop a model for 
estimating belowground biomass due to resource con-
straints. As a result, BGB was calculated using root-to-
shoot ratio method [59]. This may under or overestimate 
the BGB stored by the studied highland bamboo forests. 
Therefore, allometric models should be developed to pre-
cisely estimate the belowground biomass storage capacity 
of highland bamboo forests.

Conclusions
This study attests to the carbon stock potential of the 
highland bamboo forests in the homestead, river-
bank and woodlot niches. The highland bamboo for-
ests in the homestead niche stored the highest amount 
of carbon (111.56 ± 4.45  Mg  C  ha−1), followed by the 
woodlot (104.97 ± 2.50  Mg  C  ha−1) and the riverbank 
(87.52 ± 4.42 Mg C ha−1) niches, respectively. Generally, 
the highland bamboo forests of the study area can store 
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a total of 304.05 Mg C ha−1 and sequester 1,115.86 tons 
of CO2 eq. in their biomass, playing a critical role in the 
mitigation of climate change. If bamboo forests are prop-
erly managed and harvested culms are turned into dura-
ble products, they can sequester more carbon and serve 
as an important long-term carbon sink.

Bamboos provide income and supports farmers’ live-
lihoods due to their rapid growth and short harvest-
ing cycle. Furthermore, because bamboo is adaptive to 
adverse site conditions, it can be planted in degraded 
lands, which is a common problem in Ethiopian high-
lands. As a result, expanding bamboo plantations will 
play critical economic, ecological, and environmental 
roles in land rehabilitation, soil and water conservation, 
carbon sequestration, and livelihood improvement.
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