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Abstract 

Background  The alpine meadow is one of the most important ecosystems in the Qinghai-Tibet Plateau (QTP), 
and critically sensitive to climate change and human activities. Thus, it is crucial to precisely reveal the current 
state and predict future trends in the carbon budget of the alpine meadow ecosystem. The objective of this study 
was to explore the applicability of the Biome-BGC model (BBGC) in the Qinghai Lake Basin (QLB), identify the key 
parameters affecting the variation of net ecosystem exchange (NEE), and further predict the future trends in carbon 
budget in the QLB.

Results  The alpine meadow mainly acted as carbon sink during the growing season. For the eco-physiological fac‑
tors, the YEL (Yearday to end litterfall), YSNG (Yearday to start new growth), CLEC (Canopy light extinction coefficient), 
FRC:LC (New fine root C: new leaf C), SLA (Canopy average specific leaf area), C:Nleaf (C:N of leaves), and FLNR (Fraction 
of leaf N in Rubisco) were confirmed to be the top seven parameters affecting carbon budget of the alpine meadow. 
For the meteorological factors, the sensitivity of NEE to precipitation was greater than that to vapor pressure deficit 
(VPD), and it was greater to radiation than to air temperature. Moreover, the combined effect of two different mete‑
orological factors on NEE was higher than the individual effect of each one. In the future, warming and wetting would 
enhance the carbon sink capacity of the alpine meadow during the growing season, but extreme warming (over 3.84 
℃) would reduce NEE (about 2.9%) in the SSP5-8.5 scenario.

Conclusion  Overall, the alpine meadow ecosystem in the QLB generally performs as a carbon sink at present 
and in the future. It is of great significance for the achievement of the goal of carbon neutrality and the management 
of alpine ecosystems.
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Background
The sixth assessment report of IPCC stated that global 
air temperature has risen by 1.1 ℃ relative to pre-indus-
trial levels since the nineteenth century, and it was pro-
jected to increase by 1.5 ℃ compared to pre-industrial 
levels over the next 20 years [1]. The Qinghai-Tibet Pla-
teau (QTP) plays an important role in Asian climate, 
and is one of the most sensitive regions to recent climate 
change. Between 1960 and 2010, the warming rate on 
the QTP achieved 0.2 ℃ per decade, which is evidently 
higher than that in the other regions around the world 
[2]. On the other hand, climate change has an obvious 
impact on the structure and function of global ecosys-
tems [3, 4]. Net Ecosystem Exchange (NEE) is a vital link 
in biogeochemical cycles and a meaningful indicator of 
ecosystem functional traits [5]. It refers to the variation 
in carbon exchange between terrestrial ecosystems and 
the atmosphere caused by a combination of plant photo-
synthesis, carbon storage in canopy air, and carbon emis-
sions from biotic and abiotic respiration in ecosystems 
[6]. Therefore, NEE change has received lots of attentions 
in recent years.

The QTP is the highest plateau in the world, and has 
fragile alpine grassland ecosystems, which are highly sen-
sitive to climate change [7]. Previous studies showed that 
more than 50% of grassland carbon in China was stored 
in the grasslands of the QTP [8]. To reveal the possible 
variation of this critical carbon pool, lots of researches 
have investigated the carbon budget under varied scenar-
ios, including climate change (air temperature, precipi-
tation, radiation, etc.), permafrost degradation, grazing, 
land utilization, and so on [9–11]. From 2002 to 2020, 
among the 32 eddy covariance sites across the alpine 
ecosystems, 26 of them were reported as carbon sink, in 
which the alpine marshlands had the highest net ecosys-
tem productivity (NEP) of 104.7 ± 59.0 g C·m−2·a−1 [12]. 
For different seasons, alpine grasslands act as carbon 
sink during the growing season, and as carbon source in 
the non-growing season, due to the influence of vegeta-
tion growth and microbial activity [13]. In addition, the 
carbon source or sink function of alpine grassland exists 
spatially heterogeneous. For example, the alpine meadow 
in the northeast and southeast of QTP was primarily car-
bon sink with the mean annual NEE of -141.89 ± 56.98 g 
C·m−2·a−1, which was affected by air temperature and 
atmospheric CO2 concentration [14]. In contrast, the 
alpine grassland in arid and semi-arid areas presented as 
weak carbon sinks or carbon sources in the western QTP 
due to the limitation of surface soil moisture.

Global warming has extended the length of vegetation 
growing season, which increased about 81% of produc-
tivity in the grassland ecosystems on the QTP; however, 
it has also enhanced the decomposition of soil organic 

carbon and reduced NEP by more than 1  g C·m−2·a−1 
on the southwest of  QTP, thus weakening carbon sink 
capacity in the alpine ecosystems [15]. Mu et  al. found 
that warming accelerated the decomposition of carbon 
after permafrost collapse, and transformed ecosystems 
from carbon sinks (1.75 μmol C·m−2·s−1) to weak carbon 
sources (0.05 μmol C·m−2·s−1) during the growing season 
on the northern QTP [16]. The Qinghai Lake Basin (QLB) 
located in the northeast of QTP, and is one of the most 
sensitive areas of global climate change [17]. As the pri-
mary vegetation type of QTP, the alpine meadow adapts 
to the long-term low temperature environment, and 
is highly sensitive to the environment change [18, 19]. 
Consequently, additional research is required to deter-
mine whether future climate change would strengthen or 
diminish the carbon sink capacity of the alpine meadow 
ecosystem on the QTP.

Currently, there are three techniques to assess NEE, 
i.e., ground-based eddy covariance (EC) flux observation 
[20], remote sensing inversion [21], and process-based 
model simulation [22]. Although the EC flux observation 
is relatively accurate, it can only represent the CO2 fluxes 
in a limited area, and is usually used to reveal the NEE 
dynamic or to evaluate model performance [23]. The 
remote sensing inversion can obtain large-scale carbon 
flux data, but is difficult to perfectly elucidate the interac-
tion mechanism between vegetation growth and the envi-
ronment conditions [24]. In contrast, the process-based 
model is widely used to simulate the ecosystem fluxes of 
carbon, nitrogen, and water [25, 26]. As one of the pro-
cess-based models, the Biome-BGC (BBGC) has been 
utilized to explore the future trends in carbon budget and 
its response to the variation of eco-physiological param-
eters. Moreover, its applicability has been demonstrated 
in the Zhenqin alpine meadow, Wudaoliang alpine 
grassland and other areas [27, 28]. The freeze–thaw 
cycling has an obvious impact on vegetation phenology 
and hydrological process, and further influences carbon 
budget on the QTP [29]. By combining with remote sens-
ing phenology theories and hydrothermal models, the 
simulation accuracy of the BBGC has been improved to 
simulate the NEE seasonal dynamics effectively [30, 31]. 
Qi et al. pointed out that from 2005 to 2008, the alpine 
meadow ecosystem on the QTP acted as weak carbon 
sink, and short-term warming would increase the NEE 
by 29.6% [32]. Liu et  al. found that air temperature and 
precipitation were the two dominant factors controlling 
carbon budget of the alpine grassland on the QTP, and 
the interaction between these two factors would have 
a higher effect on NPP than the effect of each one [33]. 
However, most current researches have concentrated on 
how air temperature and precipitation affect the regional 
carbon budget, while how sensitive carbon flux to other 
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hydrothermal parameters like VPD (vapor pressure defi-
cit) and shortwave radiation is not clear. Consequently, 
our study utilizes the BBGC to simulate the NEE of the 
alpine meadow ecosystem in the QLB.

The objectives of this study were to (1) verify the appli-
cability of the BBGC in the QLB; (2) investigate the key 
parameters influencing the growing-season carbon 
budget of the alpine meadow ecosystem; (3) predict the 
future trends in growing-season carbon budget of the 
alpine meadow under different climate change scenarios.

Methods
Study area and field observation
The Qinghai Lake is the largest inland saline lake in 
China, and located in the northeastern part of the QTP, 
with an altitude of 3194  m above sea level. The entire 
watershed is in a high altitude, cold and semiarid cli-
mate zone. The main vegetation types include temperate 
steppes, alpine steppes, alpine shrubs, and alpine mead-
ows with increasing altitude (Fig. 1). The eddy covariance 
(EC) observatory is located in the northern part of the 
QLB, and the mean annual air temperature and precipi-
tation from 2019 to 2021 were -2.17 ℃ and 418.8  mm, 
respectively. Approximately 70–80% of the annual pre-
cipitation occurs in the summer and early autumn. The 
main soil type is sandy loam, and the dominant species of 
the alpine meadow are Kobresia and Stipa purpurea [34].

An EC system was installed on a 40-m-high tower. The 
open-path infrared gas analyzer (LI-7500, LI-Cor, USA) 
was installed at a height of 2  m above the canopy to 

measure fluctuations of water vapor and carbon dioxide 
concentrations, while the three-dimensional sonic ane-
mometer (WindMaster, Gill, UK) at the same height was 
used to measure horizontal and vertical wind velocity 
components (u, v, and w). All the EC data were recorded 
by a CR3000 data logger (Campbell Scientific Inc., USA) 
with half-hour interval from 2019 to 2021. Data in 2020 
were missing due to equipment malfunction. A weather 
station (Dynamax Inc., USA) was set up to measure 
meteorological data such as air temperature, precipi-
tation, four-component radiation, relative humidity, 
VPD, and wind speed. All the meteorological data was 
recorded by a CR1000 data logger (Campbell Scientific 
Inc., USA) with 10-min interval. More details on the in-
situ instrument specification were described by Ma et al. 
[35].

The 10-Hz raw EC series data was processed by EdiRe 
software developed by the University of Edinburgh, and 
the correction includes spike removal, lag correction of 
carbon dioxide relative to the vertical wind component, 
sonic virtual temperature correction, the performance of 
the planar fit coordinate rotation, corrections for density 
fluctuation (WPL correction), and frequency response 
correction [36]. In addition to these data processing 
steps, both the quality control of half-hourly flux data 
and standardized mechanism to fill NEE gaps are needed 
for adequate data processing. All missing data were 
marked as -9999 (no data), and marginal distribution 
sampling (MDS) algorithm in the REddyProc gap-filling 
tool was used to fill gaps in the flux measurement data. 

Fig. 1  Distribution of vegetation types and the location of EC tower in the QLB
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More details about the data processing can be found in 
Wei et al. [37].

Input data of Biome‑BGC model
The driving data for the BBGC (4.2 version) include site-
specific data, daily meteorological data, and eco-physio-
logical parameters. The site-specific data include altitude, 
latitude, longitude, and soil texture. The daily meteoro-
logical data contains daytime average air temperature, 
daily maximum air temperature, minimum air tempera-
ture, precipitation, VPD, daylight average shortwave radi-
ation and daylength. The alpine meadow was classified 
as C3 grass. In the BBGC, among 43 eco-physiological 
parameters, 31 of them were used effectively (Table  1). 
In this study, C:Nleaf, C:Nroots, and SLA were determined 
by filed measurement. The experimentation details can 
be found in Xiang et al. [38]. The other parameters were 

inaccessible, and mainly came from references and model 
default values.

To establish a stable state, the model first goes through 
the Spin-up mode, which starts with a very low soil car-
bon content and repeats the meteorological data. Then, 
the Normal mode is used to generate the final simulation 
results.

Parameter optimization
Based on the PEST model, we used the daily carbon flux 
data in 2019 and 2021 to optimize and fit the eco-physi-
ological parameters in the BBGC. The core of the PEST 
model is the Gauss-Marquardt–Levenberg algorithm, 
which makes the simulation result as more uniform as 
the observed value (Eq. 1) [39]. The objective function is 
as follows:

Table 1  Eco-physiological parameters setting and acquisition ways in the BBGC

Parameters Values Symbol Units Sources

Yearday to start new growth 110 YSNG Day of year [25]

Yearday to end litterfall 280 YEL Day of year [25]

Transfer growth period as fraction of growing season 0.9 TGP / Optimized

Litterfall as fraction of growing season 0.46 LAFO / Optimized

Annual leaf and fine root turnover fraction 1.0 LFRT 1/yr Model default value

Annual whole-plant mortality fraction 0 WPM 1/yr Field measurement

Annual fire mortality fraction 0 FMF 1/yr Field measurement

New fine root C: new leaf C 2.5 FRC:LC / Optimized

Current growth proportion 0.47 CGP / Optimized

C:N of leaves 18.7 C:Nleaf kgC/kgN Field measurement

C:N of leaf litter, after retranslocation 65 C:Nlit kgC/kgN Optimized

C:N of fine roots 77.35 C:Nroot kgC/kgN Field measurement

Leaf litter labile proportion 0.39 Llab / Model default value

Leaf litter cellulose proportion 0.44 Lcel / Model default value

Leaf litter lignin proportion 0.17 Llig / Model default value

Fine root labile proportion 0.3 Rlab / Model default value

Fine root cellulose proportion 0.45 Rcel / Model default value

Fine root lignin proportion 0.25 Rlig / Model default value

Canopy water interception coefficient 0.021 CWIC 1/LAI/d Model default value

Canopy light extinction coefficient 0.37 CLEC / Optimized

All-sided to projected leaf area ratio 2.0 LAIall:proj / Model default value

Canopy average specific leaf area 13.24 SLA m2/kgC Field measurement

Ratio of shaded SLA:sunlit SLA 2.0 SLAsha:sun / Model default value

Fraction of leaf N in Rubisco 0.15 FLNR / Model default value

Maximum stomatal conductance 0.007 gmax m/s [25]

Cuticular conductance 0.00001 gcut m/s Model default value

Boundary layer conductance 0.04 gbl m/s Model default value

Leaf water potential: start of conductance reduction – 0.6 LWPs Mpa Model default value

Leaf water potential: complete conductance reduction – 2.3 LWPc Mpa Model default value

Vapor pressure deficit: start of conductance reduction 930 VPDs Pa Model default value

Vapor pressure deficit: complete conductance reduction 4100 VPDc Pa Model default value
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where: y is a vector with m elements (the number of 
measured values), x is a vector with n elements (the num-
ber of parameters), ŷ is a vector of the simulation result, 
x̂ is a parameter vector to be estimated, H is a Jacobian 
partial derivative matrix with m rows and n columns, T 
represents a transpose symbol, O is a weight matrix of 
measured values with m rows and m columns.

Evaluation of model applicability
The determination coefficient (R2, Eq. 2) and root mean 
square error (RMSE, Eq.  3) were used to evaluate the 
applicability of the BBGC in the QBL.

where ŷi is the observed value, yi is the simulated value, 
and yi is the average of the observed values.

Sensitivity analysis
Previous studies showed that air temperature and pre-
cipitation are projected to increase by 2.24 ℃ and 12.8% 
in 2100 relative to 2020 under the SSP2-4.5 scenario, 
respectively [40]. Therefore, we set air temperature 
change between –  2.0 and 2.0 ℃ with 0.5 ℃ intervals, 
and precipitation, VPD, and shortwave radiation change 
between – 12% and 12% with 3% intervals.

In this study, there were 31 effective eco-physiological 
parameters in the BBGC, some of them were highly rela-
tive to others or set to zero (WPM and FMF). Therefore, 
only 22 eco-physiological parameters were involved 
in the further sensitivity analysis (Table  2), and all the 
change in them were set between –  12% and 12% with 
3% interval to keep consistent with precipitation. For the 
length of growing season (the difference between YSNG 
and YEL with initial value 170), three scenarios were con-
sidered, i.e., (1) only change YSNG, (2) only change YEL 
and (3) change both YSNG and YEL.

The eco-physiological parameters were classified by 
the sensitivity discriminant index (Dsen, Eq.  4) [41]. It 
was divided into three levels, with those greater than 
20% being highly sensitive, those between 10 and 20% 

(1)� = (ŷ− y−H(x̂ − x))TO(ŷ− y−H(x̂ − x))

(2)R2
=

n∑
i=1

(ŷ2i − y2i )

n∑
i=1

(yi − y2i )

(3)RMSE =

√√√√1

n

n∑

i=1

(ŷi − yi)2

being medium sensitive, and those below 10% being 
insensitive [42, 43].

where NEEi is the NEE value simulated by the model 
after the ith float of the parameter, NEEdef is the NEE 
value simulated based on the localized parameter, and n 
is the number of floats of the parameter.

Climate scenarios design
Referring to the future trends in climate change simu-
lated by the Coupled Model Intercomparison Project 
Phase 6 (CMIP6) on the QTP [40], the linear trends in 
air temperature and precipitation were set to be 0.28 ℃ 
(10 a−1) and 1.56% (10 a−1) for the SSP2-4.5 scenario 
(medium radiation forcing), and 0.64 ℃ (10 a−1) and 
3.8% (10 a−1) for the SSP5-8.5 scenario (high radia-
tion forcing), respectively. The outputs simulated by no 
change in air temperature and precipitation were used 
as the reference.

(4)Dsen =

n∑
i=1

∣∣NEEi − NEEdef
∣∣

n× NEEdef
× 100%

Table 2  Value range of the eco-physiological parameters used in 
sensitivity analysis

No Parameter symbol Value range of parameters

1 YSNG [97, 123]

2 YEL [246, 314]

3 TGP [0.8, 1.0]

4 LAFO [0.41, 0.52]

5 FRC:LC [2.2, 2.8]

6 CGP [0.41, 0.52]

7 C:Nleaf [16.46, 20.94]

8 C:Nlit [57.2, 27.8]

9 C:Nroot [68.07, 86.63]

10 CWIC [0.018, 0.024]

11 CLEC [0.33, 0.41]

12 LAIall:proj [1.76, 2.24]

13 SLA [11.65, 14.83]

14 SLAsha:sun [1.76, 2.24]

15 FLNR [0.13, 0.17]

16 gmax [0.006, 0.008]

17 gcut [0.0000088, 0.000112]

18 gbl [0.035, 0.045]

19 LWPs [– 0.67, – 0.53]

20 LWPc [– 2.576, – 2.024]

21 VPDs [818, 1141]

22 VPDc [3608, 4592]
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Results
Seasonal variation of NEE based on EC observation
The mean annual NEE was – 207.8 g C·m−2 in 2019 and 
2021 (Fig.  2), and the maximum CO2 uptake appeared 
in late July (–  5.17  g C·m−2·day−1 in 2019 and –  4.94  g 
C·m−2·day−1 in 2021) due to the favorable hydrother-
mal conditions. During the growing season (from May 
to September), the cumulative NEE was higher in 2021 
(– 238.13 g C·m−2) than that in 2019 (– 217.46 g C·m−2). 
During the non-growing seasons, the total NEE in 2019 
and 2021 were 34.77 g C·m−2 and 5.21 g C·m−2, respec-
tively. Generally, the fluctuation of carbon fluxes in the 
alpine meadow was relatively low in the non-growing 
season.

Simulation of NEE by Biome‑BGC model
To validate the simulation results, the measured EC flux 
data was compared with outcomes estimated by the 
local parametric model (Fig.  3). The simulation result 
in 2019 showed that R2 was 0.67 and RMSE was 0.88  g 
C·m−2·day−1, and the corresponding values in 2021 were 
0.66 and 1.11  g C·m−2·day−1, respectively. Generally, 

the trend in simulated values in the growing season was 
more consistent with the observed values than that in the 
non-growing season. It indicated the BBGC had good 
applicability in the simulation of NEE during the growing 
season for the alpine meadow ecosystem in the QLB.

Sensitivity analysis of parameters in Biome‑BGC model
During the growing season, NEE climbed stead-
ily by 24.08% (from –  1.04  g C·m−2·day−1 to –  1.29  g 
C·m−2·day−1) due to the combined effect of both 2 ℃ 
increase in air temperature and 12% increase in precipi-
tation, while a strongly reduction in NEE (approximately 
57%, from – 1.04 g C·m−2·day−1 to – 0.44 g C·m−2·day−1) 
was observed when both 2 ℃ decrease in air tempera-
ture and 12% decrease in precipitation were combined 
(Fig.  4a). What’s more, NEE would reduce more than 
30% when precipitation dropped by 12%, regardless of 
the change in air temperature. Meanwhile, the combined 
effect of both air temperature and precipitation decrease 
was greater than that of precipitation decrease separately.

Increase in both air temperature and shortwave radia-
tion had a positive effect on NEE (Fig.  4b). However, 

Fig. 2  Variation of mean daily and monthly NEE in 2019 (a), (c) and 2021 (b), (d) of the alpine meadow ecosystem in the QLB
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when over 1.5 ℃ increase in air temperature and over 
9% increase in shortwave radiation were combined, NEE 
remained unchanged or even decreased slightly relative 
to the combined effect of 1.5 ℃ increase in air tempera-
ture and 12% increase in shortwave radiation. Meanwhile, 
the influence of shortwave radiation on NEE was higher 
than that of air temperature. The effect of 12% decrease 
in shortwave radiation on the variation of NEE (30%) was 
higher than that (20.58%) of 2 ℃ decrease in air tempera-
ture. When both shortwave radiation and precipitation 
increased by 12%, NEE was evidently enhanced by 34.20% 
(from –  1.04  g C·m−2·day−1 to -1.396  g C·m−2·day−1), 
which was higher than the combined effect of air temper-
ature and precipitation (Fig. 4c).

NEE raised strongly (from -1.04  g C·m−2·day−1 to 
more than -1.25  g C·m−2·day−1) when shortwave radia-
tion increased by more than 6% and VPD reduced more 
than 6% at the same time, but the other combinations of 
their variation had a negative impact on NEE (Fig.  4d). 
NEE increased consistently when increased precipitation 

and decreased VPD were combined (Fig.  4e). How-
ever, it should be noticed that a maximum reduction of 
66.75% in NEE (from -1.04  g C·m−2·day−1 to -0.335  g 
C·m−2·day−1) would result from the combined effect 
of 12% drop in precipitation and 12% increase in VPD. 
Meanwhile, the influence of VPD on NEE was lower than 
that of precipitation. The effect of 12% decrease in pre-
cipitation on the variation of NEE (49.69%) was higher 
that of 12% decrease in VPD (14.80%). In addition, the 
combined effect of 2 ℃ increase in air temperature and 
12% decrease in VPD on the variation of NEE (23.25%) 
was much lower than that (39.32%) of 2 ℃ increase in air 
temperature and 12% decrease in precipitation (Fig. 4f ).

Among 22 eco-physiological parameters for the sen-
sitivity analysis (Fig.  5), the highly sensitive param-
eters include YEL (32.54%), YSNG (16.25%), CLEC 
(15.60%), FRC:LC (14.28%), SLA (11.44%), as well as 
C:Nleaf (11.14%). The parameters with high sensitivity 
had a greater influence on NEE, and those parameters 
with Dsen above 10% were chosen to further analyze the 

Fig. 3  Comparison of NEE measured by EC (NEE_EC) and simulated by the BBGC (NEE_Sim). a, b were calibration results in 2019; c, d were 
validation results in 2021
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influence of their different amplitude on NEE. Consider-
ing that FLNR directly affects the first step of CO2 fixa-
tion by vegetation (carboxylation), it was also included in 
the further analysis [44].

Both the delayed green-up dates (increase in YSNG) 
and the advanced leaf senescence dates (decrease in 
YEL) would shorten the length of the growing sea-
son, and further weaken the carbon sink capacity of the 
alpine meadow on the QTP (Fig.  6a). In contrast, an 

earlier green-up dates (YSNG, -20  days) contributed to 
the maximum increase in NEE (about 23%, from -1.04 g 
C·m−2·day−1 to -1.28  g C·m−2·day−1). The combined 
effect of advanced green-up dates (YSNG, -10  days) 
and delayed leaf senescence dates (YEL, + 10  days) 
also strongly enhanced NEE by 21.87% (from -1.04  g 
C·m−2·day−1 to -1.267  g C·m−2·day−1). Neverthe-
less, NEE fell by 12.03% (from -1.04  g C·m−2·day−1 to 
-0.915 g C·m−2·day−1) with delayed leaf senescence dates 
(YEL, + 20 days).

The influence of physiological traits parameters 
(FRC:LC, FLNR, C:Nleaf, CLEC and SLA) on NEE showed 
that the larger variation in parameters, the more obvi-
ous variation in NEE (Fig.  6b). When these parameters 
varied from -12 to 0%, FRC:LC and C:Nleaf had a posi-
tive effect on NEE, and both of them related to the C 
and N components in various vegetation portions. When 
these parameters varied from 0 to 12%, CLEC, SLA, and 
FLNR mainly contributed to the increase in NEE, espe-
cially when CLEC increased by 12%, the highest increase 
in NEE achieved 17.34% (from –  1.04  g C·m−2·day−1 to 
– 1.22 g C·m−2·day−1). Among all the parameters, CLEC 
and SLA reflect the ability of vegetation to absorb and 

Fig. 4  The variation of NEE under synergistic effects of different environmental factors during growing season of the alpine meadow ecosystem 
in the QLB. Environmental factors include air temperature (Temp), precipitation (Prcp), vapor pressure deficit (VPD) and shortwave radiation 
(Shortwave). a, b, c, d, e, and f represent the combined effect of Prcp and Temp, Shortwave and Temp, Shortwave and Prcp, Shortwave and VPD, 
VPD and Prcp, VPD and Temp on NEE, respectively

Fig. 5  Sensitivity discriminant index (Dsen) of eco-physiological 
parameters in the BBGC
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intercept light energy, and FLNR mainly controls the 
content of photosynthetic enzymes, thus affecting the 
rate of CO2 assimilation of plants [45].

NEE response to climate change
During the growing season, the response of NEE to 
the change in air temperature and precipitation in the 
alpine meadow was different under varied SSPs scenar-
ios (Fig.  7). NEE decreased continuously in the SSP2-
4.5, while first increased and then decreased in the 
SSP5-8.5. Between 2020 and 2060, NEE in the SSP2-4.5 
was lower than that in the SSP5-8.5 with mean daily 

value of –  1.24  g C·m−2·day−1 (SSP2-4.5) and –  1.36  g 
C·m−2·day−1 (SSP5-8.5) in 2060, respectively. It indi-
cated that from 2020 to 2060, the carbon sink capacity 
of the alpine meadow would be stronger in the SSP5-
8.5. During 2080–2100, NEE continued to increase in 
the SSP2-4.5 with a substantial rise compared with the 
period of 2020–2060, and reached the highest value 
of – 1.31 g C·m−2·day−1 in 2100. In the SSP5-8.5, NEE 
got the highest value of – 1.42 g C·m−2·day−1 in 2080, 
and then showed a decreased trend from 2080 to 2100 
(from –  1.42  g C·m−2·day−1 to –  1.34  g C·m−2·day−1). 
To clarify how air temperature and precipitation caused 

Fig. 6  Effects of vegetation phenology traits parameters (a) and physiological traits parameters (b) on the simulation results of NEE 
during the growing season of alpine meadow ecosystem in the QLB. YSNG, YEL, and YSNG & YEL represent only changing YSNG, only changing YEL, 
and changing both YSNG and YEL equally, respectively in (a) 

Fig. 7  Mean daily value of NEE and its variation amplitude in different periods under different climate change scenarios
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the variation of NEE, this study further analyzed the 
single effect of them on NEE under different scenarios.

During 2020–2060, in the SSP2-4.5, with air tem-
perature increased by 0.28, 0.56, 0.84, and 1.12 ℃, the 
NEE would increase by 0.53%, 1.19%, 2.56%, and 4.05%, 
respectively (Fig.  8). In contrast, with the increase in 
precipitation by 1.56%, 3.12%, 4.68%, and 6.24%, NEE 
increased by 0.06%, 1.65%, 4.69%, and 9.70%, respec-
tively. At the same time, in the SSP5-8.5, with the 
increase in air temperature by 0.64, 1.28, 1.92, and 2.56 
℃, NEE raised by 6.56%, 3.31%, 6.25%, and 4.94%; with 
the increase in precipitation by 3.8%, 7.6%, 11.4%, and 
15.2%, NEE raised by 2.19%, 9.99%, 14.43%, and 14.83%. 
In the SSP5-8.5, NEE decreased slightly with warming 
between 2030 and 2040 (from –  1.11  g C·m−2·day−1 
to –  1.08  g C·m−2·day−1), and the total NEE in 2040 
only increased by 1.62% compared with that in 2030, 
even though the NEE increased by more than 7% with 
increasing precipitation from 2030 to 2040 (from 
– 1.07 g C·m−2·day−1 to – 1.15 g C·m−2·day−1). It indi-
cated that from 2020 to 2060, NEE was mainly con-
trolled by air temperature in both two scenarios, and 
even a minor rise in air temperature and precipitation 
would increase the NEE and enhance the carbon sink 
capacity in the alpine meadow ecosystem.

In the SSP2-4.5, the further increase in air tempera-
ture could not lead to a significant rise in NEE from 
2080 to 2100. In contrast, the NEE increased by 15.52% 
(from –  1.04  g C·m−2·day−1 to –  1.20  g C·m−2·day−1) 
with the increasing precipitation by 12.48%. In the 
SSP5-8.5, due to the increase in precipitation, the NEE 
continuously grew by 9.81% in 2100 compared with that 
in 2080. However, warming over 3.84 ℃ would result in 
2.9% decrease in NEE (from –  1.04  g C·m−2·day−1 to 
– 1.01 g C·m−2·day−1) in 2100. It showed that the exces-
sive warming was the primary factor weakening the 
carbon sink function of the alpine meadow ecosystem 
during the growing season.

Discussion
Variation characteristics of carbon budget
The mean annual NEE of the alpine meadow ecosystem 
in the QLB was – 227.79 g C·m−2·a−1 in 2019 and 2021. 
It indicated that the alpine meadow acted as a strong car-
bon sink, which was significantly higher than the alpine 
shrub (– 77.8 g C·m−2·a−1) and the alpine meadow-steppe 
(– 66.7 g C·m−2·a−1) [46]. The high altitude, low tempera-
ture and large temperature difference between day and 
night in the QLB are conducive to the carbon assimila-
tion of vegetation [47], but also inhibit the respiration of 
vegetation and soil microorganisms [48]. Precipitation 
and temperature have the potential to influence the activ-
ities of soil microorganisms and their related enzymes, 
as well as improving the light use efficiency of vegetation 
[49]. Therefore, the favorable hydrothermal conditions in 
the growing season are beneficial for the accumulation of 
above- and below-ground biomass.

Even within the same ecosystem, the carbon source or 
sink function would vary widely from region to region 
depending on different factors. For example, the carbon 
source or sink function of the Lijiang alpine meadow in 
the southeastern of the QTP was different during the wet 
and dry seasons [50]. In the wet season, it performed as 
carbon sink (– 37.6 ± 22.5 g C·m−2·month−1), whereas it 
alternated between carbon source and carbon sink in the 
dry season. The Haibei alpine meadow played a role in 
weak carbon sink (– 36.2 g C·m−2·a−1) in 2015 and weak 
carbon source (21.6 g C·m−2·a−1) in 2016 as a result of the 
recurrent El Niño weather [51]. Therefore, the effects of 
meteorological factors have a significant impact on how 
ecosystems vary their capacity to operate as carbon sink 
or source.

As a parameter that describes temperature and rela-
tive humidity, VPD mainly affects the stomatal conduct-
ance and then affects vegetation photosynthesis [52]. In 
the sensitivity analysis, precipitation had a greater impact 
on NEE than VPD. The daily EC-observed data showed 
that the maximum value of VPD in the growing season 
reached up to 720.7 Pa in the alpine meadow. On the one 
hand, higher VPD may lead to a decrease in stomatal 
conductance of plant leaves and inhibit vegetation photo-
synthesis. On the other hand, the stomata are more sensi-
tive to ambient humidity in bigger plant leaves [53, 54]. 
Moreover, VPD is a sensitive parameter for GPP in the 
BBGC based on the global sensitivity analysis, and it has 
a complex influence on the stomatal conductance under 
the conditions of sufficient light during the growing sea-
son [55]. Furthermore, radiation and temperature both 
have an impact on how VPD affects NEE [56]. Radiation 
enhancement has stronger transmission in the canopy, 
coupled with the reduction in VPD, which induces the 

Fig. 8  Single effect of air temperature and precipitation 
on the variation of NEE under different climate change scenarios 
during growing season of the alpine meadow ecosystem in the QLB



Page 11 of 15Zhang et al. Carbon Balance and Management           (2023) 18:25 	

opening of vegetation stomata. Thus, this process pro-
motes photosynthesis in vegetation [57, 58].

We found that when precipitation was sufficient, the 
radiation had a stronger effect than air temperature on 
enhancing carbon sink in the alpine meadow during the 
growing season. The amount of radiation received by the 
vegetation canopy determines how much carbon dioxide 
could be fixed in the ecosystem [59]. Moreover, the scat-
tering part of solar radiation can enhance the light use 
efficiency of vegetation canopy by interacting with vege-
tation leaf area index [60]. Despite the fact that photosyn-
thesis in ecosystems is primarily powered by radiation, 
the canopy density of vegetation and the surrounding 
environment also have a significant impact on how much 
carbon is taken up by ecosystems [61, 62]. The carbon 
budget capacity of vegetation canopy under sunny condi-
tions is less than that under cloudy conditions, and the 
intensive radiation in sunny conditions may inhibit pho-
tosynthesis [63, 64]. According to the Lambert–Beer for-
mula, the BBGC first divides the leaves into two sections, 
shade leaf area and sunlit leaf area, and then calculates 
the transmission and absorption of canopy radiation by 
using SLA, leaf C, and the SLAsha:sun [65]. SLA reflects 
the light-capturing ability of vegetation and is a medium-
sensitive parameter in the BBGC (for Dsen is 22.44%). 
Therefore, the effect of radiation on SLA is key to simu-
late photosynthetic processes. However, the Lambert–
Beer formula does not account for multiple scattering in 
vegetation media, which also increases the uncertainty of 
the model simulation as the radiation changes [66].

Uncertainty of Bime‑BGC in the non‑growing season
One of the most recognizable features in perma-
frost areas on the QTP is the freeze–thaw cycle in the 
active layer. During this process, when the temperature 
decreases, soil water freezing leads to a decrease of liquid 
water content. On the contrary, when the temperature 
increases, the melting of frozen water leads to an increase 
in the liquid water content [67]. The difference in temper-
ature between the soil shallow layer and the frozen layer 
would result in a vertical transportation in soil water [68]. 
Previous study also suggested that there is an obvious 
vertical differentiation pattern in soil water on the QTP 
[69]. But soil water dynamic is simplified in the BBGC, as 
only one soil layer is defined.

In addition, at the stage of freezing and thawing, soil 
water affected the physiological processes in vegetation 
roots, and further affect soil respiration. Meanwhile, 
the alternate between freezing and thawing affects soil 
microorganisms in complex ways, and it may induce 
microbes to reverse their physiological acclimation to 
freezing rapidly and accelerate basal respiration by up to 

30% [70]. However, this model does not fully consider the 
variation of soil respiration caused by soil water dynamic.

Sensitive parameters for carbon budget
In this study, we found that NEE mainly response to 
the eco-physiological parameters which represent veg-
etation phenology (YEL and YSNG), or characterize the 
ratio of C and N content in different parts of vegetation 
(FRC: LC, FLNR and C:Nleaf), or reflect the ability of 
vegetation to absorb and reflect light radiation (CLEC 
and SLA). In previous study, Li et al. suggested that the 
sensitive parameters affecting NPP in Pinus knotata and 
broadleaf forests were mainly C:Nleaf, C:Nroot, SLA, and 
CWIC based on the global sensitivity analysis [71]. Liu 
et al. pointed out that in the Hainan rubber forest, NEE 
was mainly sensitive to CLEC, SLA, C:Nleaf, and FLNR 
[72]. Overall, the sensitive eco-physiological parameters 
affecting the variation of NEE in this study were basically 
consistent with previous studies.

But how exactly do these parameters influence the 
simulation results of NEE? We found that C:Nleaf, FLNR, 
and SLA determine the maximum rate of carboxylation 
in the photosynthetic module [73, 74]. Previous stud-
ies showed that the Rubisco enzyme is the first step that 
directly affects the fixation of carbon dioxide by vegeta-
tion [75]. Therefore, the increase in FLNR will raise the 
N content in Rubisco, promote the enzyme activity, and 
improve vegetation photosynthesis. Compared to FLNR, 
the increase in C:Nleaf have negative impact on NEE, 
since nitrogen content in Rubisco enzymes would dimin-
ish with the increase in C:Nleaf [74]. Both CLEC and SLA 
reflect the light-reflecting and light-harvesting capacity 
of vegetation. Thus, the higher they are, the more pho-
tosynthetically active radiation the leaf received for pho-
tosynthesis [76, 77]. Furthermore, FRC:LC mainly affects 
the carbon emission by affecting vegetation growth [78].

In the context of warm and humid climate in the future, 
the extension of the growing season effectively enhances 
the carbon sink of the alpine meadow ecosystem [79, 80], 
especially there is an earlier trend in the green-up dates. 
However, no matter how YEL changed, its variation led to 
the decrease in NEE. This mainly because the variation of 
YEL had a little effect on the duration of NEE < 0. Essen-
tially, with YEL increased, the dates originally defined as 
non-growing season would transform into growing sea-
son. Considering that the simulation of NEE in the BBGC 
was not well fitted with the non-growing season and no-
heavy precipitation days (the precipitation on the QTP 
is mainly occurs in summer), more carbon uptake in the 
growing season was not enough to offset carbon emis-
sion in the new defined growing season [81]. Therefore, 
the mean daily NEE in the growing season decreased 
compared with the initially simulated result.
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Future trends of carbon budget
The variation of NEE in both the SSP2-4.5 and the SSP5-
8.5 are mainly due to warming from 2020 to 2060. In the 
SSP2-4.5, the driving factor for the variation of NEE 
shift from air temperature to precipitation between 
2080 and 2100, and the capacity of the carbon sink keeps 
rising. While in the SSP5-8.5, NEE is still driven primar-
ily by air temperature, and the carbon sink capacity may 
even decrease due to excessive warming. Because of the 
high altitude and low temperature, the activation of soil 
microbial enzymes is restricted and the mineralization 
process of organic matter components is slowed on the 
QTP [82]. Global warming has effectively alleviated this 
limitation, promotes the microbial metabolism in the 
alpine meadows, and accelerates carbon cycling during 
the growing season [83]. A series of warming experi-
ments demonstrated that the variation of surface soil 
temperature has a great influence on NEE duo to warm-
ing. For example, during 2014–2016, warming caused 
the average daytime NEE decreased by 16.5% ~ 21.3% in 
the Heihe Basin [84]. However, Du et al. demonstrated 
that less than 2 ℃ increase in temperature would not 
have much influence on the amount of CO2 absorption 
in the ecosystem, while over 2.6 ℃ increase in tempera-
ture would change the CO2 absorption into CO2 release, 
and 4.8 ℃ increase in temperature would induce a large 
amount of CO2 release from the alpine meadow eco-
system (about 166.8 gC·m−2·year−1) [85]. This means 
that excessive warming like SSP5-8.5 would jeopardize 
future carbon sink capacity at the alpine meadow eco-
system on the QTP.

As water is a key factor influencing plant growth, the 
response of NEE to precipitation is largely dependent 
on the increase in soil water content after precipita-
tion, as well as changes in above-ground net primary 
productivity [86, 87]. In arid and semi-arid regions, 
excessive warming may lead to a decrease in the avail-
able soil moisture content for vegetation [88], so that 
the effectiveness of precipitation was greater than that 
of air temperature over the long-term period of climate 
change in the SSP2-4.5. On the other hand, precipitation 
is the main variable controlling productivity and carbon 
sequestration in arid and semi-arid regions. The increase 
in precipitation regulates soil water content, makes the 
soil environment moister, which improving the supply 
of vegetation nutrients, promoting plant photosynthe-
sis, and further accelerating carbon sequestration [89, 
90]. Therefore, the continuous increase in precipitation 
has consistently shown a positive effect on the carbon 
sink capacity of the alpine meadow and mitigated the 
negative impact of excessive warming on NEE during the 
growing season.

Conclusions
The research investigated the applicability of the BBGC, 
the sensitive parameters affecting the variation of NEE, 
and the future trend in carbon budget of the alpine 
meadow ecosystem during the growing season in the 
QLB. The main conclusions are as follows:

(1)	 The BBGC could simulate the NEE well during the 
growing season, and the simulation results were 
not accurate during the non-growing season, which 
may be caused by the soil water dynamics and the 
increased soil respiration during the freeze–thaw 
cycle.

(2)	 Among the meteorological parameters, NEE was 
more sensitive to precipitation than to VPD, and 
more sensitive to radiation than to air tempera-
ture. The eco-physiological parameters affecting 
NEE included phenology parameters (YEL and 
YSNG) and physiological traits parameters (CLEC, 
FRC:LC, SLA, C:Nleaf, and FLNR), which represent 
the ability of vegetation to absorb and reflect light 
radiation and the C and N content in different parts 
of vegetation.

(3)	 From 2020 to 2060, NEE would increase with 
warming and increasing precipitation in both SSP2-
4.5 and SSP5-8.5. However, over 3.84 ℃ warming 
would jeopardize the carbon sink capacity of the 
alpine meadow in the QLB during the growing sea-
son. In the SSP2-4.5, the main factor that affect the 
NEE was warming during 2020–2060 and increas-
ing precipitation between 2080 and 2100, respec-
tively. By contrary, in the SSP5-8.5, warming was 
always the primary factor affecting the variation of 
NEE.
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