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Abstract 

Background:  The quantification and spatially explicit mapping of carbon stocks in terrestrial ecosystems is important 
to better understand the global carbon cycle and to monitor and report change processes, especially in the context 
of international policy mechanisms such as REDD+ or the implementation of Nationally Determined Contributions 
(NDCs) and the UN Sustainable Development Goals (SDGs). Especially in heterogeneous ecosystems, such as Savan-
nas, accurate carbon quantifications are still lacking, where highly variable vegetation densities occur and a strong 
seasonality hinders consistent data acquisition. In order to account for these challenges we analyzed the potential of 
land surface phenological metrics derived from gap-filled 8-day Landsat time series for carbon mapping. We selected 
three areas located in different subregions in the central Brazil region, which is a prominent example of a Savanna 
with significant carbon stocks that has been undergoing extensive land cover conversions. Here phenological metrics 
from the season 2014/2015 were combined with aboveground carbon field samples of cerrado sensu stricto vegeta-
tion using Random Forest regression models to map the regional carbon distribution and to analyze the relation 
between phenological metrics and aboveground carbon.

Results:  The gap filling approach enabled to accurately approximate the original Landsat ETM+ and OLI EVI values 
and the subsequent derivation of annual phenological metrics. Random Forest model performances varied between 
the three study areas with RMSE values of 1.64 t/ha (mean relative RMSE 30%), 2.35 t/ha (46%) and 2.18 t/ha (45%). 
Comparable relationships between remote sensing based land surface phenological metrics and aboveground 
carbon were observed in all study areas. Aboveground carbon distributions could be mapped and revealed compre-
hensible spatial patterns.

Conclusion:  Phenological metrics were derived from 8-day Landsat time series with a spatial resolution that is suffi-
cient to capture gradual changes in carbon stocks of heterogeneous Savanna ecosystems. These metrics revealed the 
relationship between aboveground carbon and the phenology of the observed vegetation. Our results suggest that 
metrics relating to the seasonal minimum and maximum values were the most influential variables and bear potential 
to improve spatially explicit mapping approaches in heterogeneous ecosystems, where both spatial and temporal 
resolutions are critical.
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Background
Terrestrial ecosystems play a pivotal role in provid-
ing regulating ecosystem services related to global and 
climate change [1]. Photosynthesis and respiration 
processes of vegetation are the direct link between bio-
sphere and atmosphere, stressing terrestrial ecosystems’ 
importance in the global carbon cycle [2]. As natural or 
anthropogenic disturbances such as fires and land cover 
conversions alter ecosystem functions and eventually can 
turn carbon sinks into sources, it is crucial to monitor 
change processes and map related carbon stocks and the 
changes thereof. A better understanding of the carbon 
cycle is especially important due to the uncertainties of 
how vegetation will respond to a changing climate [3, 4]. 
In addition, accurate quantification of carbon stocks and 
related changes is essential for measuring and report-
ing schemes within the context of international climate 
policies such as the Reducing Emissions from Deforesta-
tion and Forest Degradation (REDD+) mechanism of 
the United Nations Framework Convention on Climate 
Change (UNFCCD) [3, 5]. National and regional stake-
holders also need up-to-date information to support the 
NDCs and the UN SDGs as a mechanism to finance cli-
mate change adaptation related policies [6]. In order to 
map carbon stocks over large extents remote sensing data 
have been shown to be mandatory [7, 8]. During the last 
decades several approaches using active [9–11], passive 
[12] or both [13] remote sensing data types have proven 
sufficient accuracies for carbon quantification. This 
development has been catalyzed by the broad availabil-
ity of improved remote sensing datasets and the evolu-
tion of cutting-edge data mining techniques for remote 
sensing data analysis [7, 14]. The majority of these stud-
ies has focused on dense forest ecosystems, however, a 
large share of the terrestrial surface is rather character-
ized by ecosystems with gradual transitions in vegeta-
tion density, such as Savannas. Globally, Savannas cover 
approximately 20% of the land area [15] and even though 
they usually contain less carbon than dense forest ecosys-
tems they are important carbon sinks [16] and cannot be 
neglected in global carbon cycle analyses [14, 17]. This is 
specifically true considering recent trends of land conver-
sions in Savanna regions (e.g. [18]). A prominent example 
of these ecosystems is the Brazilian Savanna, known as 
the Cerrado, which covers approximately 2  million  km2 
or ca 23% of Brazil’s surface area [19]. It is character-
ized by diverse vegetation structure and density, strong 
seasonality and fire events [20, 21]. The Cerrado is has a 
high biodiversity with many endemic species [22] and is, 
due to a weak conservation status and subsequently a loss 
of habitat, considered as one of the global biodiversity 
hotspots [23, 24]. Large areas of the natural vegetation 
have already undergone tremendous land cover changes, 

leading to a share of approximately 60% of remaining nat-
ural vegetation, which is expected to further decline in 
the future [25]. The combination of these factors directly 
impacts the link between the land surface and the atmos-
phere [26], which is e.g. through processes such as pho-
tosynthesis and respiration reflected in the vegetation’s 
phenology [27]. It emphasizes the role of the Cerrado in 
the carbon cycle, the need for accurate carbon quantifi-
cations [28, 29] and for a better understanding of phenol-
ogy—carbon relations.

Similar to other Savanna regions, the main challenges 
for remote sensing based carbon quantification in the 
Cerrado are related to the strong seasonality of rainfall, as 
cloud cover in the wet season hinders the frequent acqui-
sition of optical imagery [30]. During the last decades, 
several studies have shown the potential of multi-tempo-
ral remote sensing approaches and time series analysis to 
capture land surface phenology, based on high temporal 
resolution data from sensors such as e.g. AVHRR [31, 
32] or MODIS [26, 33] and also discussed its benefits for 
biomass estimation [34]. However, approaches based on 
high temporal resolution data usually lack the spatial res-
olution that is necessary to monitor heterogeneous and 
fragmented ecosystems, where reflectance measures are 
composed of spectral properties from several land cover 
types [35, 36] and aboveground carbon might change at 
finer spatial scales than captured in spatial coarse reso-
lution data [12]. Recently, it has been shown that using 
Landsat data with its spatial resolution of 30 m can help 
to overcome this shortcoming. Avitabile et al. [12] dem-
onstrated Landsat’s potential for aboveground biomass 
estimation in Uganda and their results suggest that 
adding phenological information from multi-temporal 
imagery could improve model performance by better dis-
criminating vegetation types. In aboveground biomass 
models of Sudano-Sahelian woodlands, Karlson et al. [37] 
identified the median of a dry season Landsat NDVI time 
series as one of the three most important variables. How-
ever, Landsat’s relatively low temporal resolution with a 
revisit time of 16  days challenges deriving annual land 
surface phenology (LSP) that captures the whole growing 
season, especially in cloud prone areas [38]. At the same 
time, the huge amount of freely accessible, archived data 
holds unexplored potential for ecosystem mapping and 
monitoring [39].

First promising approaches to analyze dense Landsat 
time series exist, which are e.g. based on data pooling [35, 
40, 41] or gap filling approaches [42, 43]. We here aim to 
further exploit the approach proposed by Schwieder et al. 
[43], based on the hypothesis that a link between annual 
dynamics of vegetation as captured in LSP metrics, the 
productivity of plants and the aboveground carbon stored 
in vegetation can be established. Our objectives thus are 
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to (i) investigate the potential to model aboveground 
carbon in a heterogeneous ecosystem based on Landsat-
derived LSP metrics (ii) assess the relation between these 
phenology metrics and aboveground carbon and (iii) use 
these metrics to map the carbon distribution across dif-
ferent Cerrado landscapes.

Methods
Study areas and field data
The Cerrado stretches from around 2°–25° South. Its 
elevation ranges from sea level to 1800 m above sea level 
[19], with most of the Cerrado being part of the Brazil-
ian Central Plateau. Average annual precipitation ranges 
from 1300 to 1600  mm, with distinct dry (May to Sep-
tember) and wet seasons (October to April). With a mean 
temperature of 20.1  °C, the Cerrado is classified as Aw 
climate after Köppen-Geiger, which is typical for Savanna 
regions [44, 45]. The well drained soils of the Cerrado 
are mainly dystrophic with rather high aluminum and 
iron contents [19]. These environmental factors can vary 
widely over the vast extent of the Cerrado, adding to the 
heterogeneity of the biome. Fire occurrence and long 
term climatic fluctuations further increase vegetation 
variability creating strong gradients in vegetation struc-
ture and density over space and time [20]. The result-
ing mosaic of landscape formations ranges from open 
grasslands over shrub-dominated areas and scattered 
tree formations with grassland understory to dense for-
est patches. This mosaic is therefore classified in distinct 
physiognomy classes based on their respective vegetation 
height and tree cover [46]. Different physiognomies are 
accordingly characterized by different biomass and thus 
also differ in their shares of stored above- and below-
ground carbon [16, 47].

This study focuses on three areas in the Brazilian 
Savanna that are characterized as cerrado sensu stricto, 
which is the most abundant physiognomy in the remain-
ing natural Cerrado vegetation [28]. The cerrado sensu 
stricto may feature 20–50% of tree cover and individual 
tree heights range from 3 to 6 m [46]. All three sites lie 
within protected areas, i.e. anthropogenic land cover 
changes can be neglected for this analysis. Their spatial 
extents were defined by available field data. The most 
western of our three study areas is located near the bor-
der of the Brazilian federal states of Goiás and Mato 
Grosso close to the city of Barra do Garças (Fig.  1A; 
center coordinate: 15.84022 S, 52.23978 W). It lies within 
the borders of the Parque Estadual da Serra Azul (PESA). 
According to data from the Shuttle Radar Topography 
Mission (SRTM) the elevation in our study area ranges 
between 413 and 771  m  asl. The lower elevations are 
covered by dense semi-deciduous forests, whereas the 

surrounding higher areas are cerrado sensu stricto. The 
second study area covers parts of the Parque Estadual 
de Terra Ronca (PETR) (Fig.  1B; center coordinate: 
13.62773 S, 46.28531 W). It is located near the city of São 
Domingos at the border of the states Goiás and Bahia 
[48]. Here elevations vary between 617 and 1013  m  asl. 
The third study area is located in the North of Goiás 
state, close to the city of Alto ParaÍso de Goiás within 
the Parque Nacional da Chapada dos Veadeiros (PNCV; 
Fig. 1C; center coordinate 14.1046 S, 47.7170 W). Eleva-
tions vary from 1068  m to 1267  m  asl, with rocky out-
crops at higher altitudes. Cerrado sensu stricto areas 
dominate in PNCV with a few gallery forest patches 
along water bodies [49].

In all three study areas, field plots were established 
following sampling protocols based on the procedures 
for the permanent plots of the PPBio program [50] with 
adaptations to the Cerrado biome. Two parallel 5  km 
tracks (1 km apart) were defined, with five equally spaced 
250  m × 40  m (10,000  m2) plots being staked out along 
each route. The longer dimension of the plots followed 
the contour of the terrain in order to avoid the possi-
ble effects of variations in altitude on its characteristics. 
Within these plots all trees with a minimum diameter at 
a height of 30  cm above the ground level of 5  cm were 
sampled between 2012 and 2014 (taxa, height and diame-
ter). However, we excluded trees with a diameter smaller 
than 10  cm from the carbon analysis to make sure that 
we focus on vegetation with relative stable carbon stocks. 
Field plots that covered vegetation physiognomies other 
than cerrado sensu stricto were excluded from the analy-
sis, resulting in 8 field plots each for PESA and PETR and 
6 for PNCV (Fig. 1A–C). Aboveground carbon values for 
each sampled tree were calculated with a specific allo-
metric equations [51], which is considered representative 
for the cerrado sensu stricto physiognomy as it is based 
on a broad variety of 174 individuals sampled in Bra-
sília, DF. The resulting carbon values were spatially allo-
cated to the 30 m spatial resolution of the Landsat grid 
following the approach proposed by Leitão et al. [52]. In 
the first step the polygons that were sampled in the field 
are intersected with the Landsat grid. Polygons that fully 
lie within a Landsat pixel were randomly separated and 
used to estimate linear regression coefficients based on 
their individual carbon values measured in the field and 
a high resolution (5 m × 5 m) RapidEye vegetation index 
layer (REVI; [53]). The best performing model coeffi-
cients were selected based on cross validation. Finally, the 
REVI layer and the estimated regression coefficients were 
used to spatially allocate and extrapolate, the carbon val-
ues measured in the field, to the unsampled areas of the 
intersecting Landsat pixel [52].
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Phenological metrics
Land surface phenology and related phenological metrics 
were derived from a combined Landsat ETM+ and OLI 
8-day time series. Therefore, all available L1T corrected 
Landsat ETM+ and OLI surface reflectance data (path/
row: PESA 224/071; PNCV 221/070; PETR 220/069) that 
were acquired between the beginning of 2014 and the 
end of 2015 (cloud cover < 90%) were downloaded along 
with their respective cfmask product [54]. The enhanced 
vegetation index (EVI) was calculated based on Eq.  (1), 
as it is known to decouple the canopy background signal 
and to reduce atmospheric influences, while still being 
sensitive to high biomass/carbon values [55]:

where ρ relates to the surface reflectance values in the 
respective Landsat bands covering the near infrared 

(1)

EVI = 2.5∗
ρNIR − ρRED

ρNIR + 6∗ρRED − 7.5∗ρBLUE + 1

(NIR), red (RED) and blue (BLUE) wavelengths of the 
electromagnetic spectrum. Following Schwieder et  al. 
[43], a weighted ensemble of three radial basis convo-
lution filters (RBF) with varying kernel widths (σ) was 
used to fill temporal data gaps in a vegetation index time 
series at pixel level. The RBF ensemble was applied, using 
temporal bins of 8  days, to the period from the first of 
January 2014 to the 31 of December 2015, resulting in a 
total of 92 potential original Landsat observations within 
2  years, to which available original data were assigned 
based on their respective acquisition dates. Outliers were 
excluded from the time series if they were more distant 
than one standard deviation to a convolution filter func-
tion with a kernel width of σ = 20 [43]. Three convolution 
filters with kernel widths of σ = 8, σ = 16 and σ = 32 were 
subsequently used to fill the data gaps. The final time 
series profile is the combination of the three, whereas 
each filter is weighted based on the original data avail-
ability (Fig. 2). To assess the deviation of the fitted RBF 

Fig. 1  Locations of the three study areas, which are located within A Parque Estadual da Serra Azul (PESA). B Parque Estadual de Terra Ronca (PETR) 
and C Parque Nacional da Chapada dos Veadeiros (PNCV) in the Brazilian Cerrado. The red polygons show the location of the field transects within 
the study areas with underlying true color Rapid Eye imagery
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values from the original Landsat ETM+ and OLI EVI 
values, the RMSE was calculated for each sample pixel. 
Finally, the gap-filled time series were further processed 
in TIMESAT [56] to derive LSP metrics (Fig. 2). As it was 
not expected to detect more than one phenological sea-
son in the natural vegetation of the Cerrado, the season-
ality parameter was set to 1 and the start/end of season 
were defined as the day of year when 20% of the seasons 
amplitude was reached from the left (start of season) or 
right (end of season) minimum of the seasonal profile. 
Following the detection of start of season (SoS) and end 
of season (EoS), the length of Season (LoS) was derived as 
the difference between the two variables. A further vari-
able that relates to the timing of the seasons is the mid of 
season (MoS). It was derived as the average day of year 
when the respective 80% level right and left side of the 
peak has been reached. The Base value (BV) was calcu-
lated as the mean EVI value of the two seasonal minima 
and the maximum fitted value (MfV) is the largest EVI 

value of the fitted time series. Amplitude (Amp) relates to 
the range of EVI values between BV and MfV. The rate of 
increase (RoI) and Rate of decrease (RoD) are calculated 
as the ratio between the difference in EVI at 20 and 80% 
levels of the left (RoI) and right (RoD) side of the peak 
and the corresponding difference in time in absolute val-
ues. For further details on the derived metrics see Jöns-
son and Eklundh [56].

Carbon model
To map carbon distributions as well as to analyze the 
relation between phenological parameters and above-
ground carbon values, we used a random forest regres-
sion (RFR). RFR has been shown to adequately estimate 
carbon from remote sensing data that is usually not lin-
early related to metrics from satellite imagery [57]. RFR 
is an ensemble approach, which is based on the Classifi-
cation and Regression Tree algorithm [58]. Best splits of 
the training data are derived at each node using a subset 

Fig. 2  Phenological pixel profile in PESA (-15.851089; -52.261512) after outlier detection and RBF fitting, along with in TIMESAT derived phenologi-
cal metrics (A: start of season; B: end of season; C: maximum fitted value; D: base value; E: amplitude; F: rate of increase; G: rate of decrease). The black 
points represent the original Landsat EVI values and the blue line the fitted RBF ensemble values within 8-day temporal bins
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of the input features. As single trees are assumed to be 
prone to errors, RFR builds many regression trees (i.e. a 
forest) from random subsets of the input data and vali-
dates the results on the withheld data. The final result of 
the regression is the averaged outcome of all regression 
trees [59].

The carbon model for each study area was iterated 1000 
times with randomly drawn subsets of 70% training and 
30% validation data to derive performance measures and 
to obtain statistically robust results. Model performance 
was assessed using the root mean square error (RMSE), 
the relative root mean square error (relRMSE), defined 
as the ratio between RMSE and the mean trainings pixel 
carbon values, as well as the coefficient of determination 
(R2). To derive the optimum number of sample pixels, 
considering the area of the pixel that was actually meas-
ured in the field a sensitivity analysis was performed for 
each study area [52]. Therefore, we executed our carbon 
models with subsets of the original sample data set based 
on the percentage of pixel area sampled in the field in 
10% steps. The individual sample sets for each study area 
were subsequently filtered for further analysis, using the 
derived optimal thresholds. The final maps are based on 
the mean carbon predictions after 1000 iterations. To fur-
ther assess the relation between the phenological metrics 
and aboveground carbon, we evaluated the influence of 
the individual variables based on the RFR variable impor-
tance. It is derived by calculating the difference between 
the cross-validated model performance (out-of-bag mean 
square error; MSE) using all variables as model input 
and the performance of a model with permutated values 
within the respective variable, which enables a ranking 
of the most important variables by increase in MSE. The 
measures are scaled based on their respective standard 
errors [60]. Partial dependency plots (PDP) of the phe-
nological metrics were created using the R-package pdp 
[61]. These plots allow analyzing the influence of each 
input variable on the response, by individually evaluating 
the Random Forest model based on the variations within 
one selected variable, while all other variables are fixed 
to their respective mean. However, as PDP’s are useful to 

analyze the relation between carbon distribution and LSP 
metrics, but do not reveal the relations among the input 
variables, a principle component analysis (PCA) was per-
formed based on the correlation matrix of the phenologi-
cal metrics. Then the carbon values were plotted within 
the new feature space. Both analyses were derived for 
three RFR models based on all available samples of each 
study area, considering the respective sensitivity analysis 
threshold. The carbon models were built in the R envi-
ronment [62] using the tuneRF function of the random 
Forest R-package [60] for automated model parameter 
optimization.

Results
During the season of interest (2014/15) a total of 46 
Landsat ETM+ and OLI observations were acquired at 
8-day intervals. Cloud coverage and sensor errors led 
to a reduced effective observation density in our study 
areas, which greatly differed between the dry and the 
wet season. On average, 23 (PESA), 21 (PNCV) and 26 
(PETR) observations of our sample pixels were available 
for the whole season. During the dry season, an average 
of 13 (PESA), 16 (PNCV) and 17 (PETR) from 20 poten-
tial observations were available, in contrast to 10 (PESA), 
5 (PNCV) and 9 (PETR) from 26 during the wet season 
(Table 1). The deviations between the fitted and the origi-
nal EVI values resulted in an average RMSE of 0.018 in 
the PESA sample pixels, where fitted EVI values ranged 
around a mean of 0.344. Based on the PNCV samples the 
average RMSE was 0.010 and the fitted RBF EVI values 
had a mean of 0.238. In PETR the RMSE was 0.013 with 
a fitted EVI mean of 0.271. The mean allocated above-
ground carbon values were 5.47 t/ha in PESA, 3.66 t/ha in 
PNCV and 4.73 t/ha in PETR (Table 1). From these dense 
8-days Landsat time series pixel-wise seasonal phenolog-
ical metrics were derived for each study area, whenever 
TIMESAT recognized a full season. These metrics, which 
describe the course of the phenological profiles, enabled 
a standardized interpretability of the results and reduced 
the amount of model input variables from 46 EVI values 
to 9 phenological metrics per pixel.

Table 1  Average data availability from Landsat ETM+ and OLI observations within the sample pixels for the dry (May–
September 2014) and  wet (October 2014–April 2015) season, relative to  the amount of  potentially available original 
observations

The mean RMSE values are based on the deviations between the fitted and the available original EVI values for each study area

No. of samples Data availability  
dry season [%]

Data availability  
wet season [%]

Mean RMSE  
(min; max)

Mean RBF EVI  
(min; max)

Mean allocated 
carbon [t/ha]
(min; max)

PESA 198 63 39 0.018 (0.012; 0.024) 0.344 (0.204; 0.447) 5.47 (0; 15.21)

PETR 207 85 36 0.013 (0.007; 0.018) 0.271 (0.176; 0.350) 4.73 (0; 20.56)

PNCV 165 81 18 0.010 (0.005; 0.016) 0.238 (0.183; 0.299) 3.66 (0; 14.63)
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The spatial allocation approach, which was used to 
match field polygons and the phenological metrics pixel 
grid, led to a total of 198 sample pixels in PESA and 207 
in PETR to be used as input for the carbon models. As 
some of the data in the 165 PNCV pixel were too noisy to 
derive phenological parameters, 15 pixels were excluded 
from the carbon models. The regression coefficients used 
for spatial allocation were 2.810 (PESA), 3.973 (PNCV) 
and 2.695 (PETR).

The sensitivity analysis revealed that carbon model per-
formance generally decreased and was less stable during 
1000 iterations, when fewer samples were included in the 
model (Fig. 3). In terms of relative RMSE the models per-
formed best with thresholds of around 0.1. Thus all pix-
els in which less than 10% was sampled in the field were 
excluded from further analysis.

Carbon model performances differed between the 
three study areas with averaged R2 values of 0.69 for 
PESA, 0.43 for PETR and 0.36 for PNCV and a similar 
trend in RMSE values of 1.65 t/ha (relative RMSE 0.30) in 
PESA, 2.18 t/ha (relative RMSE 0.45) in PETR and 2.35 t/
ha (relative RMSE 0.46) in PNCV (Table 2).

Despite the differences in model performance, the vari-
able importance ranking was largely stable across models, 
with BV and MfV being ranked as first or second most 
influential variables across all study areas (Fig. 4). Ranks 
of further variables varied between the study areas, with 
higher standard deviations in PNCV and PETR. Espe-
cially in PETR the individual variable importance was 
small with comparably high standard deviations (Fig. 4).

The partial dependency plots of important phenologi-
cal metrics (Fig.  5) highlight the relation between the 
phenological metrics and carbon distributions. BV and 
MfV are positively correlated to carbon values through-
out all study areas. While BV steadily increases with 
increasing carbon values even in data sparse regions, sat-
urations occur in MfV when carbon values approximate 
around 5.7–6.7 t/ha. Even though carbon value distribu-
tions vary among the study areas, the relation between 

BV and carbon is similar. The relation between MoS and 
carbon is comparable in PESA and PNCV with lower 
carbon values being associated to a later peak of season. 
Even though the trend is not as clear in PETR, it remains 
comparable to the other regions until mid of season 
around DOY 54.

Additional to the analysis of the relations between car-
bon and individual phenological metrics, the principal 
component analysis (PCA) reveals the distribution of car-
bon values within an uncorrelated variable space (Fig. 6). 
In PESA the first two axes explain 66% of the variance 
within the phenological metrics. The first axis is defined 
by EVI-related values such as BV and MfV, as opposed to 
metrics related to the timing of the season such as MoS 
and SoS. The latter are related to smaller carbon values, 
whereas BV and MfV are associated with larger values. 
The second axis is defined by the negative correlation 
between temporal metrics (EoS and LoS) and EVI related 
values (RoD and Amp). In PNCV the first two axes of the 
PCA explain 67% of the metrics’ variation. Here the neg-
ative correlation between EVI metrics (Amp, BV, MfV) 
and seasonal timing (SoS) is revealed, where a cluster of 
rather large carbon values is oriented towards MfV, BV 
and Amp. The second axis is defined by the negative cor-
relation between LoS, EoS and RoD, where average car-
bon values cluster. In the case of PETR, the first two axes 
of the PCA explain 69% of the variance. The first axis is 
defined by the temporal metrics MoS and SoS and their 
negative correlation with RoI and MfV, with the latter 
being associated to rather larger carbon values. The sec-
ond axis is defined by RoD on one side and BV on the 
other side, with rather equally distributed carbon values 
at both ends.

The carbon distribution was mapped based on the 
mean of 1000 model predictions throughout the selected 
study areas (Fig.  7). The final RF models explained 68% 
(PESA), 37% (PETR) and 49% (PNCV) of the withheld 
variance on average. The predicted carbon values range 
between 1.8 and 11.8  t/ha in PESA, between 2.4 and 
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13.1 t/ha in PETR and between 1.3 and 9.6 t/ha in PNCV. 
Standard deviations of up to 1.7 (PESA), 2.7 (PETR) and 
2.2 (PNCV) mainly relate to predictions for areas with 
high carbon values.

Discussion
Spatially explicit quantification of aboveground carbon 
distributions is essential to monitor and understand 
ongoing changes in carbon stocks. In heterogeneous 
landscapes, such as typical for the Cerrado, the spatial 
and temporal resolution at which we monitor the ecosys-
tem play a pivotal role for our ability to map carbon. The 
presented results highlight the potential of annual LSP 
metrics, derived from dense 8-day Landsat time series 
with a spatial resolution of 30 m × 30 m, for the spatially 
explicit quantification of aboveground carbon. Using all 
available satellite observation from Landsat enabled us 
to assign field based carbon values to LSP metrics from 
Landsat time series that describe the seasonal changes of 
the monitored vegetation as captured in the EVI.

Although the regression model performances vary 
between the three observed study areas they are still 
within a range that is comparable to results from stud-
ies dealing with the mapping of carbon in similar eco-
systems. For example, González-Roglich and Swenson 
[17] used, among other variables, products derived from 
Landsat data to map carbon distributions in Argentin-
ian Savanna regions. Their spatially explicit predictions, 
based on field samples ranging around a mean of 27 t/ha, 
had a mean prediction error of 9.6 t/ha (relRMSE 35%) at 
60 m spatial resolution. Karlson et al. [37] reported model 
performances with an R2 of 0.57 and RMSE of 17.6 t/ha 
(relRMSE 66%) when mapping aboveground biomass 
in Sudano-Sahelian woodlands using multi-temporal (7 
observations) Landsat OLI products. Remote sensing 
based carbon estimations are prone to several sources of 
errors that propagate through the individual steps of the 

study, thus influencing the final model uncertainty. Errors 
may be introduced, on the part of the field sampling, by 
the defined plot size and sampling design, measurement 
errors during field work, allometric equations (to derive 
carbon values) and the spatial allocation of field sam-
ples to the pixel grid. However, according to Chave et al. 
[63] the main source of error can be attributed to the 
chosen allometric equation. Even though the allometric 
model that we employed is representative for the most 
abundant plant families within the selected study areas 
(Vochysiaceae and Fabaceaea), we found differences 
between the three study areas in species composition 
and abundance. Especially, species that were prominently 
abundant in PNCV and PETR (e.g. vellozia squamanta, 
virtella ciliata) were not considered for deriving the allo-
metric model presented in Rezende et al. [51] and might 
explain variations in the overall model performances. 
Even though the magnitude of the influence could not 
be quantified it stresses the importance for refined allo-
metric equations in further research. Another source of 
uncertainty is the chosen sampling design and the asso-
ciated sampling plot size. We accounted for unsampled 
pixel regions using a sophisticated spatial allocation 
approach, which employed high-resolution reference 
data as a weighting layer [52] and evaluated the trade-off 
between total sampling size and extrapolated pixel val-
ues. It could be observed that a decrease in the number of 
samples led to weak and less robust model performances, 
i.e. an increase in relRMSE and the related standard 
deviations. Nevertheless, we did not quantify the influ-
ence of the general plot sampling size on the final model 
outcome. A meta-study by Zolkos, Goetz [64] compared 
model performances of 70 + biomass estimation studies 
(based on Lidar, Radar, optical and combined data sets) 
and revealed the influence of the sampling plot size on 
model performance. Their comparison revealed relative 
residual standard errors of biomass models with plot 
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sizes below 0.2  ha (Landsat pixel ≙ 0.09  ha) that range 
between 10 and 50% [64]. Chave et  al. [63] estimated 
uncertainties due to plot sizes of 0.1 ha to be > 10% and 
suggest at least 50 × 50  m plots to represent study site 
variability. However, as the employed sampling strategy 
was not solely intended for carbon estimations but for 
a range of ecological research, it was designed to meet 
several criteria. The sampling strategy might thus not 
have been sufficient to equally capture the respective 

study site heterogeneities regarding the regional carbon 
distribution (see Additional file  4 for histograms). Our 
results show that the spatially allocated carbon values 
differ between the three study areas with highest values 
in PESA, followed by PETR and PNCV. This trend is also 
reflected in the distribution of EVI values and the respec-
tive phenological metrics and follows the gradient from 
overall lower (PESA) to higher (PNCV) elevations above 
sea level between the observed areas.
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Along with the abovementioned findings our results 
stress the complexity and challenges of carbon mapping 
approaches, especially in heterogeneous Savanna sys-
tems, in which an additional critical issue is the influence 
of understory vegetation (grasses and shrubs). Our sam-
ples only considered woody vegetation with a diameter 
of at least 10 cm. Thus, the carbon values lack shares of 
smaller trees and the non-woody vegetation layer, which 
would require a more frequent field sampling design to 
capture their dynamics. Even though the below canopy 
vegetation is not considered in the field sample, it is still 
influencing the spectral signal throughout a season. We 
accounted for these variations by interpreting EVI based 
LSP metrics that describe a full annual season, as EVI 
values are known to be sensitive to structural variations 
in vegetation canopies and the canopy background is 
decoupled from the signal [55]. Our results indicate that 
the RBF filter ensemble was able to capture the seasonal 
profile of the original observations, with minor deviations 
from the original EVI values. Using all available cloud-
free data from Landsat provides a maximum number of 
observations as the basis for fitting the RBF and accord-
ingly data gap fill values represent the best possible tem-
poral interpolation. But even though the RBF ensemble 
approach accounts for data availability through adjusted 
weights, the variations in available observations between 
the dry and wet season still have an influence on the phe-
nological profiles and ultimately the derived metrics. This 
is a limitation that in the future is likely to be overcome 

by the integration of additional data from other sensors, 
such as Sentinel-2 [65].

Despite the discussed restrictions in our models, we 
showed, to our best knowledge for the first time, the 
benefits of using LSP metrics with a 30 m × 30 m spatial 
resolution for carbon modelling, contributing to the body 
of research that employ LSP metrics for carbon estima-
tions (e.g. [66–68]). Our results highlight that in con-
trast to raw time series of vegetation indices, LSP metrics 
simplify further analysis of the relation between above-
ground carbon and LSP.

Especially metrics that are directly related to the 
amount of vegetation, such as base value and maxi-
mum fitted value, have the potential to explain carbon 
variations, as they were ranked as first or second most 
important in our regression models. This pattern is also 
revealed by the PCAs that on the one hand show corre-
lations among the LSP metrics but also reveal relation-
ships between them and carbon values. In all three study 
areas, but especially prominent in PESA, are clusters of 
lower carbon values associated to high values of variables 
related to seasonality, such as SoS or MoS. This suggests 
that vegetation with higher carbon densities might be 
related to an earlier start of season, which is here defined 
as the point in time when 20% of the ascending part of 
the phenological profile is reached, as well as an earlier 
peak of season. A possible explanation might be the leaf 
producing strategy of some of the (semi-) deciduous spe-
cies, for which a high activity of leaf production could be 
observed at the end of the dry season [69, 70], causing 
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an earlier green-up in the phenological profile. Similar 
phenological patterns have been observed in the western 
part of the Sudanian Savanna, where a later start of sea-
son was observed in LSP for areas with higher shares of 
herbaceous than woody vegetation [71].

The final carbon maps show comprehensive spatial pat-
terns with e.g. high carbon values along the riparian veg-
etation (gallery forests) and the dense forest patches in 
the lower elevations in PESA. Vegetation patterns in very 
high resolution imagery from RapidEye suggest that the 
region’s heterogeneity is very well reflected in the spatial 
variations of the mapped carbon patterns. The spatially 
explicit quantification captures the landscape composi-
tion and highlights the benefits of Landsat’s spatial reso-
lution for estimating carbon across different study areas 
in the Cerrado. This is also stressed when comparing the 
final carbon maps to available wall-to-wall carbon prod-
ucts such as the high-resolution carbon map for Brazil 
[72] or the carbon base map of the year 2000 presented 

by Zarin et  al. [73]. However, these products are based 
on a range of input data with varying spatial resolutions, 
aiming to estimate carbon distributions of woody vegeta-
tion with a global model. A direct comparison of these 
carbon values to our regional model outputs is therefore 
not straight-forward, but can be used to assess the agree-
ment between spatial patterns.

The range of mapped carbon values is in line with val-
ues found in the literature. Carbon values for cerrado 
sensu stricto are for example summarized in Ribeiro 
et al. [29], as well as in Vourlitis and da Rocha [74] and 
range between 3.3 and 32.5 t/ha (mean 8.5 t/ha) or 5.0–
15.9 t/ha (mean 9.7 t/ha), respectively, depending on the 
regional focus and the methods used. However, due to 
a lack of additional reference data, the maps could not 
be independently validated and especially estimates for 
physiognomies that were not included in the training 
samples (such as grasslands and dense forests areas) need 
to be regarded with caution. Indeed, the carbon-dense 

Fig. 7  Left: Carbon maps for the study areas PESA, PNCV and PETR based on the mean predictions of 1000 individual Random Forest regression 
models for each study area along with the sampling transects in red. Right: Corresponding standard deviation maps



Page 13 of 15Schwieder et al. Carbon Balance Manage  (2018) 13:7 

areas, e.g. gallery forests and forest patches (e.g. sea-
sonal forest and Cerradão), are associated with the high-
est standard deviations, as they are model extrapolations 
and our models will most likely underestimate carbon 
stocks in these areas. Our results highlight that pheno-
logical metrics derived from freely available remote sens-
ing data are a valuable contribution to carbon mapping 
approaches, providing spatially explicit knowledge for 
environmental managers and policy makers in support 
of sustainable development policies related to REDD+ or 
the UN SDG’s.

Conclusions
Based on gap-filled 8-day Landsat EVI time series, we 
derived annual land surface phenology (LSP) metrics 
for cerrado sensu stricto vegetation. The derived met-
rics enabled us to reduce the amount of input data for 
a following Random Forest regression analysis, while 
preserving the information needed to approximate LSP. 
They further facilitated determining a relationship to the 
aboveground carbon distribution, with an adequate spa-
tial resolution for mapping gradual vegetation transitions 
in heterogeneous Savanna ecosystems, such as the Cer-
rado. Our results are comparable to those of similar stud-
ies and we successfully identified the relation between 
the seasonal behavior of cerrado sensu stricto vegetation 
and its carbon distribution. Metrics that are instantly 
linked to amounts of vegetation such as Base value and 
Maximum fitted value have been shown to be important 
for such a mapping approach. Metrics relating to the tim-
ing of phenological events, such as start or mid of season 
showed a weaker relation and were not consistently rel-
evant for carbon mapping. We were able to map carbon 
distributions within the selected study areas, whereat 
higher uncertainties were identified in physiognomies 
and related carbon values that were not well represented 
by the field sampling. We verified that Landsat based 
annual LSP metrics are beneficial variables to analyze 
carbon—phenology relations and for the spatially explicit 
quantification of aboveground carbon in heterogene-
ous ecosystems such as the Cerrado. In order to improve 
large-scale carbon mapping efforts, our findings stress 
the need for representative sampling strategies, along 
with subsequent improvement of allometric equations, 
which together reflect the variability within the observed 
Savanna vegetation gradient. Further research should 
investigate the potential of mapping approaches that 
synergistically combine phenological metrics with vari-
ables related to the vertical structure of vegetation (such 
as lidar or radar) and analyze the influence of additional 
data (e.g. Sentinel-2) on the accuracy of the derived phe-
nological metrics.
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