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Abstract 

Background:  Satellite-based aboveground forest biomass maps commonly form the basis of forest biomass and 
carbon stock mapping and monitoring, but biomass maps likely vary in performance by region and as a function of 
spatial scale of aggregation. Assessing such variability is not possible with spatially-sparse vegetation plot networks. 
In the current study, our objective was to determine whether high-resolution lidar-based and moderate-resolution 
Landsat-base aboveground live forest biomass maps converged on similar predictions at stand- to landscape-levels 
(10 s to 100 s ha) and whether such differences depended on biophysical setting. Specifically, we examined deviations 
between lidar- and Landsat-based biomass mapping methods across scales and ecoregions using a measure of error 
(normalized root mean square deviation), a measure of the unsystematic deviations, or noise (Pearson correlation 
coefficient), and two measures related to systematic deviations, or biases (intercept and slope of a regression between 
the two sets of predictions).

Results:  Compared to forest inventory data (0.81-ha aggregate-level), lidar and Landsat-based mean biomass predic-
tions exhibited similar performance, though lidar predictions exhibited less normalized root mean square deviation 
than Landsat when compared with the reference plot data. Across aggregate-levels, the intercepts and slopes of 
regression equations describing the relationships between lidar- and Landsat-based biomass predictions stabilized 
(i.e., little additional change with increasing area of aggregates) at aggregate-levels between 10 and 100 ha, suggest-
ing a consistent relationship between the two maps at landscape-scales. Differences between lidar- and Landsat-
based biomass maps varied as a function of forest canopy heterogeneity and composition, with systematic deviations 
(regression intercepts) increasing with mean canopy cover and hardwood proportion within forests and correlations 
decreasing with hardwood proportion.

Conclusions:  Deviations between lidar- and Landsat-based maps indicated that satellite-based approaches may 
represent general gradients in forest biomass. Ecoregion impacted deviations between lidar and Landsat biomass 
maps, highlighting the importance of biophysical setting in determining biomass map performance across aggregate 
scales. Therefore, regardless of the source of remote sensing (e.g., Landsat vs. lidar), factors affecting the measurement 
and prediction of forest biomass, such as species composition, need to be taken into account whether one is estimat-
ing biomass at the plot, stand, or landscape scale.
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Background
Satellite-based maps of forest structure are widely 
used to understand landscape patterns in vegeta-
tion characteristics, to support natural resource plan-
ning, and to facilitate carbon mapping and monitoring 
efforts [1]. Satellite-based maps of aboveground forest 
biomass upon which carbon monitoring systems are 
often based have become common due to the tempo-
rally deep and spatially complete nature of the data. 
For example, 30-m spectral reflectance data from the 
Landsat satellite program provides the capacity for 
wall-to-wall vegetation mapping from 1984 to present 
[2, 3]. Despite known limitations, such as the saturation 
in the relationship between Landsat time series (LTS) 
data and forest basal area or biomass [4], LTS data form 
the basis of multi-decadal landscape-, regional-, and 
continental-scale monitoring of land cover and veg-
etation attributes [5–7]. However, LTS-based maps can 
be highly uncertain for individual pixels (i.e., 900  m2), 
with accuracy and precision varying both by response 
variable and region [1, 8–10]. In contrast, map per-
formance can improve as the geospatial footprint is 
increased when aggregating data, such as has been seen 
with imputed forest attribute mapping [2, 11, 12]. Thus, 
a key challenge for the mapping of carbon stocks, such 
as aboveground live forest biomass (AGB; Mg ha−1), is 
identifying the minimum appropriate area of aggrega-
tion, a task made challenging by the paucity of dense 
vegetation plot networks.

Plots are sparse and therefore limit the statistical and 
spatial analyses possible. Fortunately, recent high-res-
olution AGB maps in many forest landscapes provide 
opportunities for multi-scale uncertainty assessments. 
High-resolution, active remote sensing technologies, 
such as aerial light detection and ranging (lidar), offer an 
alternative to moderate-resolution, passive sensors, like 
Landsat Thematic Mapper and Enhanced Thematic Map-
per Plus. Lidar-derived AGB maps can provide improved 
accuracy in mapping relative to satellite-based multispec-
tral sensors [13]. However, current lidar datasets are not 
spatially extensive, temporally dense, or historically deep, 
limiting their capacity to form the basis of regional moni-
toring programs. Nevertheless, they provide valuable 
information for understanding and correcting prediction 
errors inherent in existing LTS-based map products. For 
example, comparisons of lidar and satellite-based AGB 
maps in Maryland, USA, indicated that local discrep-
ancies in predictions (i.e., differences between mapped 
aboveground live biomass at some aggregate-level) 
were common, generally leading to a net underestimate 
of biomass in satellite-based maps compared to lidar-
based maps, with these differences persisting even when 
comparing averages across the entire study region [14]. 

However, it is not known how common such patterns are 
across other forest landscapes.

Even within a single landscape, uncertainty in the 
relationship between remote sensing and forest bio-
mass should be expected to vary, likely as a function of 
vegetation gradients themselves [9]. Mapping methods 
that incorporate both remote sensing and environmen-
tal data implicitly account for some of this variation [12, 
15], allowing environmental data to modify the relation-
ship between remote sensing and plot data. High resolu-
tion, direct measurement of vegetation height using lidar, 
and the close relationship of these data to vegetation 
structure [16], can provide more accurate aboveground 
biomass maps compared to optical remote sensing [17]. 
Similarities amongst regression models relating lidar 
height metrics to AGB across broad regions highlight 
the relative insensitivity of AGB predictions to structural 
and compositional variation [18, 19]. However, regional 
variation in allometric equations has a substantial impact 
on model development and performance [20] and might 
result in variation in remote sensing-derived above-
ground biomass map accuracy.

In this work, we compared lidar-based and LTS-based 
predictions of mean AGB at scales from sub-hectare 
to landscapes (10  s to 1000  s  ha) to assess factors con-
tributing to local discrepancies between biomass map 
products. The degree to which LTS and lidar maps con-
verge (i.e., become increasingly similar as aggregate scale 
increases) is likely to be a function of the ecosystem types 
being examined. Such information will help to define 
appropriate scales of aggregation and landscape-level 
correlates with varying performance for LTS-based AGB 
mapping products—essential for its continued use by 
land managers, policy makers, and scientists alike. As a 
result, providing map users with a multi-scale compari-
son of differing products and assessing how performance 
varies as a function of the vegetation characteristics 
themselves may provide valuable guidance to planners 
and decision-makers assessing the current status of for-
est carbon stocks. We address the following questions: 
(1) at what aggregate-level do lidar and LTS based predic-
tions of mean aboveground biomass become equivalent, 
if at all? (2) Do unsystematic (i.e., noise) and systematic 
deviations (i.e., biases) change as biophysical setting (e.g., 
percentage of the landscape classified as forest [percent 
forested], forest canopy cover, and percent hardwood) 
changes?

Methods
Study area
This study focuses on three study regions—Coos Bay, 
Colville, and Deschutes—located in Oregon and Wash-
ington, USA for which a single acquisition of aerial lidar 
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data was available (Fig.  1, Table  1). Study regions range 
in size from 347 to 4609 km2, encompassing portions of 
three to eight different level 4 ecoregions [21] that range 
in size from 10 to 2369  km2, with 0.7–37.8% of each 
ecoregion incorporated in the current analysis (Table 1). 
Therefore, while the full extent of each study region was 
examined in this study, a minority of area encompassing 
each ecoregion that intersects a given study region was 
included. The study regions have diverse patterns of land 

ownership and management, and represent broad gradi-
ents in climate and vegetation based on parameter eleva-
tion relationships on independent slopes model (PRISM) 
climate data [22] and forest inventory and analysis (FIA) 
data [23], respectively (Additional file 1: Figure S1). Coos 
Bay is a warm, wet region and is comprised of forests 
with a greater proportion hardwood and forests with 
greater mean forest canopy cover compared to the other 
two study regions. Deschutes is cooler and drier than 
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Fig. 1  Study region map of total aboveground forest biomass based on LTS and the gradient nearest neighbor (GNN) imputation methodology
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Coos Bay, with little hardwood basal area and with mean 
forest canopy cover ranging from 10 to 70% across ecore-
gions (Additional file  1: Figure S1). Colville has similar 
temperature, but less precipitation than Deschutes, and 
has similar mean forest cover and hardwood proportion. 
All three regions exhibit high variation in percentage of 
land classified as forest based on the National Gap Analy-
sis Project [24]. The variation in forest landscapes within 
and across study regions represents much of the range of 
AGB across Oregon and Washington (Table 1).

Total aboveground biomass maps
This project used lidar- and LTS-based mean AGB maps 
for each study region collected from 2008 to 2010, as 
determined by the year during which lidar data were 
acquired (Table 1). Therefore, LTS- and lidar-based AGB 
maps were compared for the same year within a study 
region. Regardless of data source (i.e., lidar vs. LTS), 
plot data with individual tree measurements were avail-
able, with species and tree diameter. We used the com-
ponent ratio method for predicting aboveground live 
tree biomass [25, 26], summed tree-level predictions to 
plot-level, and rescaled AGB to the per unit area level 
(i.e., Mg  ha−1). While we briefly describe the LTS- and 

lidar-based modeling methods below, they are described 
in greater detail in [3].

LTS‑based AGB mapping
LTS-based maps were developed independently for 
broad modeling regions roughly equivalent to level 
3 ecoregions [21] using the gradient nearest neigh-
bor (GNN) imputation method. Level 3 ecoregions are 
broader in scope than the level 4 ecoregion or the study 
regions described in Table  1, and therefore incorporate 
FIA plot data from a wider selection of forest ecosystems. 
While the use of FIA plots from beyond the bounds of 
the study regions likely provides more information on 
forest conditions with which to develop AGB maps, there 
are likely still limits to our capacity to map extreme con-
ditions, such as very high biomass forests. GNN imputa-
tion is a flexible, non-parametric modeling and mapping 
methodology that relates measured forest attribute data 
from inventory plots to geospatial information, includ-
ing LTS data and abiotic environmental data [12, 15, 27]. 
Plot data (basal area for species by size class groupings) 
and geospatial predictors (both LTS and environmental 
variables from regional or national geospatial datasets) 
were extracted for each plot for the year that the plot was 

Table 1  Description of the study regions and ecoregions (area within study regions only)

Further details on lidar acquisitions in Additional file 1

Study region Ecoregions Lidar year Forest area 
within ecoregion

Mean GNN 
biomass (Mg ha−1)

Mean lidar 
biomass 
(Mg ha−1)

(km2) (%)

Coos Bay 2008–2009 4609 194.6 244.1

Coastal Lowlands 464 13.6 100.9 141.6

Coastal Uplands 758 11.1 146.9 199.7

Coastal Siskiyous 203 9.2 216.9 191.7

Inland Siskiyous 78 1.2 180.8 210.3

Mid-Coastal Sedimentary 2369 24.5 235.2 302.1

Northern Franciscan Redwood Forest 28 0.7 333.7 361.7

Southern Oregon Coastal Mountains 670 37.8 178.3 195.4

Umpqua Interior Foothills 39 1.7 128.5 187.5

Colville 2008 347 86.1 111.1

High Northern Rockies 10 2.3 67.6 57.4

Okanogan-Colville Xeric Foothills 73 1.0 55.5 83.4

Okanogan Highland Dry Forest 265 5.4 97.9 123.4

Deschutes 2009–2010 2572 80.2 82.2

Cascade Crest Montane Forest 60 1.1 12.6 13.9

Cascade Subalpine/Alpine 508 25.5 114.1 91.9

Grand Fir Mixed Forest 78 3.1 88.1 58.1

Ponderosa Pine/Bitterbrush Woodland 74 2.6 125.7 108.1

Pumice Plateau 1020 9.3 70.4 84.2

Pumice Plateau Basins 515 31.0 90.5 100.5

Deschutes River Valley 317 7.8 47.5 51.7
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measured. Across eight contiguous modeling regions in 
Oregon and Washington, sample sizes for GNN mod-
eling ranged from 2024 to 5587 plots. The inventory 
plots covered a sub-sample of a roughly 90-m by 90-m 
footprint (9 Landsat pixels) [28] for which all geospatial 
predictors were extracted and averaged for the purposes 
of modeling. A canonical correspondence analysis (CCA) 
[29] was performed to define a multivariate gradient 
space. For each 30-m pixel in the study area, AGB from 
the plot identified as the nearest neighbor (i.e., minimum 
distance) in gradient space was imputed to that pixel. 
Since all geospatial predictors were available from 1984 
to 2012 (duration of Landsat 5), annual AGB maps were 
generated and the year most closely matching the lidar 
data acquisition dates (Table 1) was used for further com-
parisons. Further details regarding data and modeling 
can be found in the Additional file 1 and [3]. Hereafter, 
we refer to the AGB maps produced using GNN as LTS-
based data or maps.

Lidar‑based AGB mapping
Lidar-based maps were developed for each study region 
independently using a multiple linear regression frame-
work [3]. The lidar acquisition and model fitting process 
is described in greater detail in Additional file  1. Each 
lidar acquisition has an associated plot network (n = 893, 
157, and 303 for Coos Bay, Colville, and Deschutes, 
respectively) and characteristics of the lidar acquisition 
for calibrating AGB models. Note that the lidar plots 
were not the same as the forest inventory plots used for 
the LTS-based AGB mapping. Lidar field plots were gen-
erally smaller in area with fixed radius designs whereas 
FIA plots were larger with a nested design, though both 
sets of plots provided individual tree data to which allo-
metric equations could be applied and scaled to a per-
hectare measure of AGB (see Additional file 1 for details). 
In both cases, the component ratio method was used 
to calculate AGB from plot data [25]. A single regres-
sion model and AGB map was produced for each study 
region. Generally, measures of canopy height (e.g., 90th 
percentile height), variability in the height of returns (e.g., 
coefficient of variation in height), and/or the vertical dis-
tribution of lidar returns (e.g., proportion of lidar returns 
above 2 m height) were the strongest covariates for most 
regions and models performed well for the regions within 
which they were developed (R2 ≥ 0.69) (Additional file 1) 
[3]. Maps were aggregated to 30-m resolution to match 
LTS-based AGB maps.

Map comparisons
We compared lidar-based and LTS-based mean AGB 
(Mg  ha−1) maps across aggregate-levels from 90-m 
(0.81  ha) to 7290-m (5314.41  ha). Because annual 

LTS-based maps were generated for 1984–2012, we used 
LTS-based maps for the same year as the lidar acquisi-
tion in each study region (Table  1) to minimize differ-
ences due to the timing of remote sensing. The minimum 
90-m aggregate-level roughly matches the footprint rep-
resented by FIA plots [23] used for assessment of the two 
maps and to parameterize the GNN models. The 90-m 
aggregate-level helps to minimize potential edge effects 
and uncertainties associated with the underlying lidar 
and LTS data [30]. The 90-m aggregate-level also avoids 
errors associated with comparing map data at spatial 
resolutions finer than the input data [28]. At the 90-m 
aggregate-level (i.e., plot-level), we compared (1) biomass 
predictions (lidar or LTS) with FIA field observations as 
reference data and (2) LTS-based biomass predictions 
with the lidar biomass predictions as reference data. LTS-
based AGB accuracy assessments with FIA observations 
avoided comparing the field data with a nearest neighbor 
imputation using the same plot through a modified leave-
one-out validation procedure [15].

At all aggregate-levels (≥ 90-m), we compared mean 
LTS-based AGB predictions with mean lidar AGB pre-
dictions as reference data. For each aggregate, the mean 
pixel-level AGB was calculated. We performed com-
parisons separately for each level 4 ecoregion within a 
study region (Table  1) to assess differences in perfor-
mance across disparate forest ecosystems. Performing 
comparisons at the scale of individual ecoregions acts to 
stratify the data within a study region by biophysical set-
ting. However, given that a minority of the total area of a 
given ecoregion is represented in our three study regions 
(Table 1), comparisons may not be representative of the 
ecoregion as a whole. While we used ecoregion to stratify 
the study region based on biophysical setting, one might 
also stratify based on any variable of interest, such as ele-
vation, climate, or topography. For LTS-based AGB maps, 
pixel values for non-forest land based on 1999–2001 land 
cover data from the National Gap Analysis Project [24] 
were set to 0.0  Mg  ha−1 whereas lidar-based maps can 
include non-zero predictions for those same locations. 
Because comparisons on lidar- and LTS-based biomass 
estimates in non-forested lands would be confounded 
with this masking process, we elected to compare prod-
ucts only in the forested portion of the landscapes under 
consideration. Analyses based on aggregation across all 
pixels produced qualitatively similar results as the same 
analyses using only forested pixels, possibly because lidar 
acquisitions were focused on forest lands, minimizing the 
effects of non-forest lands on estimates at coarser aggre-
gate levels.

For a given aggregate-level, we tallied the number of 
pixels within each aggregate that fell within the area of 
interest (i.e., forest lands in a study region or ecoregion). 
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If fewer than 20% of pixels within an aggregate were for-
ested, based on GAP land cover data [24], that aggregate 
was excluded from our analysis. Inclusion thresholds as 
high as 90% produced qualitatively similar results, so 
we chose 20% to maximize the number of aggregates 
retained, allowing for examination of broader aggregate-
levels. To minimize storage and computational needs, we 
aggregated data to every 4th resolution (i.e., 3-by-3 pix-
els, 7-by-7 pixels, 11-by-11 pixels etc.), excluding pixels 
intersecting with the edge of a study region or ecoregion. 
To avoid major impacts of edge effects on our analysis, 
only aggregates for which at least 75% of their area was 
encompassed in the associated study region or ecoregion 
were retained for analysis. We defined the maximum 
aggregate-level for a given ecoregion as the maximum 
aggregate-level at which 30 aggregates still meet the 
above criteria. Thus, aggregate size ranged from 0.81 
to 5314.41  ha, depending on the size of the ecoregion 
of interest (Table  1). The resulting aggregated datasets 
allow for comparisons between lidar- and LTS-based 
AGB maps across stand- to landscape-scales for entire 
individual ecoregions, as well as study regions. For study 
regions, means and 95% confidence intervals for ecore-
gion-level performance metrics were calculated at each 
aggregate level.

Performance metrics
No single performance metric will be sufficient for exam-
ining when and how deviations between two maps or a 
map and field observations arise. For example, perfor-
mance of forest carbon maps for conterminous United 
States were assessed at multiple scales using agree-
ment coefficients, Kolmogorov–Smirnov statistics, and 
reduced major axis regression at pixel-levels ranging 
from 25 to 200 km [11]. In this research, we performed 
comparisons of lidar- and LTS-based AGB maps using 
a suite of performance metrics selected to characterize 
different components of the deviations between the two 
datasets. Specifically, we calculated the normalized root 
mean square deviation, the Pearson correlation coef-
ficient, and the intercept and slope terms from a linear 
regression to characterize the magnitude and type of 
deviation between LTS- and lidar-based AGB maps.

Similar to Huang et al. [14], overall deviations between 
the two AGB maps were assessed using the normalized 
root mean squared deviation 
(

NRMSD =

√

∑n
i=1 n

−1
(

xi − yi
)2

)

, where yi is the 

lidar-based prediction and xi is the LTS-based prediction. 
In this context, the lidar predictions are taken to be the 
reference dataset for the purposes of NRMSD, even 
though both maps contain error. We used NRMSD 
instead of root mean square deviation so that error across 

regions and ecoregions with differing magnitudes of 
observed AGB could be directly compared. To explore 
unsystematic deviations (i.e., noise), we used the Pearson 
correlation coefficient, defined as the linear correlation 
between lidar- and LTS-based AGB predictions, with val-
ues near 1 indicating little difference between the two 
datasets associated with noise. To explore systematic 
deviations (i.e., bias), we characterized the relationship 
between the lidar- and LTS-based AGB maps using linear 
regression. Specifically, we performed linear regressions 
with the LTS-based AGB as the predictor variable and 
the lidar-based AGB as the response variable. Intercept 
parameters described the lidar-based AGB with LTS-
based AGB equals zero, where intercepts greater than or 
less than 0 indicated that the lidar-based AGB were 
greater than or less than LTS-based AGB, respectively. 
Slope parameters described the change in lidar-based 
AGB with an increase in LTS-based AGB, where values 
different from 1 indicated that differences between lidar-
based and LTS-based AGB varies as a function of AGB 
itself.

Relationship between deviations and forest structure
To determine whether deviations between lidar and LTS 
AGB maps vary with forest structure, we regressed per-
formance metrics for different ecoregions at aggregate-
levels from 0.81  ha (3-by-3 pixels) to 313  ha (59-by-59 
pixels) on mean vegetation characteristics calculated 
from the FIA plots located within a given ecoregion 
(Fig.  2). Because the inclusion of smaller ecoregions 
tended to create outliers in the relationships between 
mean vegetation characteristics and performance met-
rics, we limited this analysis to the 10 ecoregions dis-
tributed across the three study regions for which at least 
30 individual 313-ha aggregates could be generated: 
Cascade Subalpine/Alpine, Coastal Lowlands, Coastal 
Uplands, Coastal Siskyous, Deschutes River Valley, Mid-
Coastal Sedimentary, Okanogan Highland Dry Forest, 
Pumice Plateau, Pumice Plateau Basins, and Southern 
Oregon Coastal Mountains. This ensured that changes 
in relationships with scale did not represent changes in 
the sampling pool as smaller ecoregions were excluded at 
larger aggregate-levels. Performance metrics for a given 
aggregate-level were calculated for the 10 large ecore-
gions within the three study regions (Fig.  2a). For these 
large ecoregions, we calculated several mean vegetation 
characteristics from FIA data within each ecoregion: 
percent of landscape classified as forest (i.e., percent for-
ested), mean canopy cover of forested areas, and hard-
wood proportion of forested areas. We selected these 
characteristics to represent spatial heterogeneity in forest 
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distribution as well as structural and compositional vari-
ation within forested portions of the landscape.

To understand some of the drivers of interregional 
variation in the performance metrics, we regressed each 
metric against vegetation characteristics for the ecore-
gions (Fig.  2b). Regressions of performance metrics on 
vegetation characteristics utilized linear regressions for 
NRMSD, intercept and slope and beta regression for 
correlation. We examined explanatory capacity with the 
coefficient of determination (R2) from linear regressions 
and pseudo-R2 from beta regressions. We performed 

linear regressions and beta regressions using the lm and 
betareg (from betareg package, version 3.1-0) [31] func-
tions in the R statistical programming language version 
3.3.2 [32].

Results
Comparing AGB maps to field measurements
Two of the study regions were large enough to contain 
numerous FIA plots: Coos Bay (n = 21) and Deschutes 
(n = 52). In both study regions, lidar-based AGB pre-
dictions performed better than LTS-based predictions, 
exhibiting lesser NRMSD and greater Pearson correlation 
coefficients (Fig.  3). In Coos Bay, lidar-based estimates 
were more biased than LTS-based estimates, tending to 
overpredict AGB. In Deschutes, biases in LTS and lidar 
estimates were similar, though lidar tended to overpre-
dict for high AGB. Additionally, saturation in the biomass 
predictions was observed for LTS-based AGB in Des-
chutes, but less so in Coos Bay and not for the lidar-based 
AGB predictions. Thus, lidar-based AGB maps compared 
to LTS-based maps exhibited less error and less noise, 
but some evidence of more bias when predicting forest 
inventory plot data for Coos Bay and Deschutes regions.

Comparing lidar‑ and LTS‑based AGB
Within study regions and ecoregions, NRMSD declined 
across aggregate-levels, often by as much as half from 
0.81 to 100  ha (Fig.  4a–c). Pearson correlation coeffi-
cients increased by 0.1–0.2 across finer aggregate levels 
(0.81–100  ha), followed by little or not increase within 
most ecoregions at coarse aggregate-levels (Fig.  4d–f). 
Between 10 and 1000  ha, we observed stabilization in 
simple linear regression parameters indicating positive 
intercept terms (Fig. 4g–i) and slopes < 1.0, though 95% 
confidence intervals included 1.0 for most aggregate-
levels in the Colville study region, for aggregate-levels 
> 10 ha in the Coos Bay study region, and for aggregate-
levels > 166  ha (Fig.  4j–l). These results indicated that 
lidar-based AGB was greater than LTS-based AGB at 
lesser values of AGB, with that difference diminishing or 
changing direction for forests with greater AGB values. 
Noise in performance metrics when aggregate area was 
large was caused by decline number of aggregates used 
to calculate ecoregion-level performance and relatively 
low numbers of ecoregions with at least 30 aggregates 
in a given study region (i.e., as aggregate-level increased, 
fewer ecoregions were incorporated in the analysis).

Using linear regression, we examined how the perfor-
mance metrics at the ecoregion-level varied as a func-
tion of vegetation characteristics (Fig. 5). By examining 
the R2 or pseudo-R2 for models with a main and quad-
ratic effect, we were able to identify which performance 
metrics varied regionally as a function of vegetation 

Fig. 2  An example of assessing the relationship between a 
performance metric (e.g., the intercept) and vegetation characteristics 
(e.g., hardwood proportion) across ecoregions. a For large ecoregions 
(i.e., at least 30 individual 313-ha aggregates could be sampled) in all 
study areas, a given performance metric is calculated across a range 
of aggregate-levels (black solid lines). At a given aggregate-level 
(vertical dashed line), the performance metric is extracted across 
ecoregions (black points). Smaller ecoregions (gray lines) were 
excluded. b The performance metrics for those points (black points) 
are regressed against a vegetation characteristic (solid line)
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characteristics: large R2 or pseudo-R2 indicated that 
ecoregion-level performance metrics varied as a func-
tion of vegetation characteristics. Percent forested was 
weakly related (R2 or pseudo-R2 > 0.35) to Pearson cor-
relation coefficient (most aggregate-levels) (Fig.  5a). 
Mean canopy cover within forested landscapes was 
related (R2 > 0.50) to the additive deviations between 

the two AGB maps (intercept) at all aggregate-lev-
els (Fig.  5b). Moderate to strong relationships (R2 or 
pseudo-R2 > 0.50) were observed between hardwood 
proportion and the intercept term and Pearson corre-
lation coefficient at all aggregate-levels and the slope 
term at aggregate-levels < 5 ha (Fig. 5c).

Fig. 3  Predicted vs. observed aboveground biomass (AGB) for FIA plots in the Coos Bay (a, b) and Deschutes (c, d) study regions based on LTS 
(a, c) and lidar (b, d) with associated model performance statistics. Dashed line indicates 1:1 line and solid line indicates a regression (observed 
AGB = f[LTS or lidar AGB]) based on the maximum likelihood estimate. For each comparison, we provide normalized root mean square deviation 
(NRMSD), Pearson correlation coefficient, and the linear regression parameters (intercept and slope)
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Due to the relatively high R2 or pseudo-R2 values 
(Fig. 5), we further examined the relationship of the lin-
ear regression intercepts with mean forest canopy cover 
and hardwood proportion as well as the relationship of 
Pearson correlation coefficient with hardwood propor-
tion. The regression intercepts between the two AGB 
maps increased with mean forest canopy cover and 

hardwood proportion (Fig.  6a, b). Pearson correlation 
coefficients between the two AGB maps decreased with 
hardwood proportion (Fig.  6c). The observed increases 
in the regression intercept with mean canopy cover and 
hardwood proportion and decreases in correlation with 
hardwood proportion were consistent across aggregate-
levels, indicating a consistent set of differences between 

Fig. 4  Means with confidence intervals (black solid and dashed lines, respectively) and observed ecoregion-level (gray lines) performance metrics 
summarizing deviations between LTS-based and lidar-based AGB mapping for ecoregions within study regions at different aggregate-levels. a–c 
NRMSD = normalized root mean square deviation; d–f Pearson correlation coefficients; g, i intercept and j–l slope are simple linear regression 
parameters with lidar-based AGB as the response variable and LTS-based AGB as the predictor variable
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lidar- and LTS-based AGB maps related to vegetation 
characteristics. Overall, these results show that forest 
canopy characteristics impacted both systematic (inter-
cept) and unsystematic (Pearson correlation) deviations 
between the two datasets.

Discussion
Stand- to landscape-level predictions of AGB based on 
lidar and LTS data differed in a consistent and predicta-
ble fashion across regions and aggregate-levels, although 
important differences emerged as a function of bio-
physical setting, as represented by ecoregion-level mean 
vegetation characteristics. Landscape-scale vegetation 
characteristics were important in explaining differences 
in mapping discrepancies among ecoregions (Fig.  5). In 
particular, we observed strong relationships between 
hardwood proportion and the regression intercepts and 
correlation coefficients, indicating that ecoregions where 
hardwoods and conifers both contributed substantially to 
AGB, the predictions exhibited strong systematic differ-
ences (i.e., increasing intercepts) and increasing impre-
cision (i.e., reduced correlation) (Fig.  6b, c). Previous 
comparisons of regionally-derived lidar AGB prediction 
performance across five sites in the Pacific Northwest 
USA indicated that mean AGB was predicted well at 
each site, but that hardwood basal area, which is highly 

correlated with biomass, was poorly predicted at two of 
the sites [19]. Studies in California have indicated that 
lidar predictions are improved through stratification pro-
cedures based on vegetation classification [33, 34]. Thus, 
a single model applied to all lands may ignore the com-
plex contributions of different components of the eco-
system, such as differing tree species, to AGB patterns, 
as has been noted for lidar-based tree basal area models 
for lower and upper canopy trees [35]. A possible solu-
tion would be to fit lidar-based AGB models for each 
ecoregion separately to account for regional variation in 
tree species composition (e.g., [33]). Alternatively, utiliz-
ing existing maps of tree species composition could be 
used as predictor variables in lidar-based AGB modeling. 
Finally, fusion of lidar-based and Landsat-based biomass 
maps could provide the basis for addressing known limi-
tations in each mapping methodology (e.g., [36]). How-
ever, uncertainties in the maps of species composition 
used in these proposed approaches will certainly impact 
resulting maps and should be considered carefully.

Discrepancies between lidar- and LTS-based AGB 
maps related to tree species composition might also 
be explained by uncertainties in allometric equations 
impacting modeling, and thus predictions [20]. For exam-
ple, if uncertainties and errors in allometric equations 
differ between hardwoods and conifers or between closed 

Fig. 5  Capacity of a percent area classified as forest, b mean tree cover within forests, and c proportion of forest basal area comprised of 
hardwoods to explain performance metrics for ecoregions at differing aggregate-levels. Explanatory capacity is represented by coefficient of 
determination (R2) from linear regression models and pseudo-R2 from beta regression models with the vegetation characteristic as the predictor 
and the performance metric as the response



Page 11 of 14Bell et al. Carbon Balance Manage  (2018) 13:15 

canopy forest tree species and woodland tree species 
[37], then spatial variation in the hardwood proportion 
or forest cover, respectively, would differentially affect 
model performance. A recent assessment of uncertainties 
in FIA allometric equations indicated that the greatest 
uncertainties in current methods may be associated with 
woodland ecosystems of the western United States [38] 
where mean forest canopy cover would be low. However, 
our results were inconsistent with such an explanation, 
as ecoregions with low canopy cover (< 30%) exhibited 
lesser intercepts (Fig.  6a). While our results were not 
consistent with allometric uncertainties determining dif-
ferences between the lidar- and LTS-based methods, our 
results appear to caution against naïve prediction of bio-
mass without accounting for major differences in vegeta-
tion characteristics.

Despite substantial geographic, ecological, and envi-
ronmental differences between study regions and ecore-
gions examined in this study (Additional file 1: Figure S1), 
consistent patterns of increasing agreement (i.e., decreas-
ing NRMSD) at coarser aggregate-levels emerged (Fig. 4). 
In part, increasing agreement with scale likely reflects the 
tendency of both methods to produce reasonable predic-
tions of mean AGB over large areas. Furthermore, under-
prediction of high AGB by Landsat-based predictions 
associated with spectral saturation [4, 39] are less notice-
able when averaged with other predictions at broader 
aggregate levels. Previously reported poor performance 
of LTS-based maps [14] are, at least in part, due to scaling 
issues in model validation. For example, one such assess-
ment found poor performance of the LTS-based maps in 
the Pacific Northwest, but this was based on field plots 
capturing structure across areas < 0.1 ha that resulted in 
a scaling mismatch [28]. Given increasing Pearson cor-
relation coefficients and the intercept and slope param-
eters from regressions between lidar- and LTS- based 
AGB approaching 0 and 1, respectively, our results high-
light declining unsystematic (i.e., noise) and systematic 
(i.e., bias) deviations between lidar- and LTS-based AGB 
maps as we transition from plot-level (0.81 ha) to coarser 
aggregate-levels (> 10–100 ha).

At aggregate-levels of 10–1000  ha, relatively stable 
relationships between the lidar- and LTS-based predic-
tions, represented in this paper by intercepts and slopes 
from regression analyses (Fig. 4), indicated that the two 
types of AGB maps represent similar gradients from low 
to high biomass forests needed by natural resources pro-
fessionals. Positive intercepts and slopes < 1 (Fig.  4g–l) 
tend to indicate that LTS under-predicts AGB relative to 
lidar most strongly in low AGB landscapes, not high AGB 

Fig. 6  Fitted relationships between the ecoregion-level (a, b) 
intercept and c Pearson correlation coefficient from a simple linear 
regression models with lidar-based AGB as the response variable 
and LTS-based AGB and vegetation characteristics as the predictors: 
a mean forest canopy cover, and b, c hardwood proportion. Each 
line is the regression fit at a given aggregate-level, ranging from 
approximately 0.81 ha (red) to hundreds of hectares (yellow). Only the 
10 largest ecoregions were included
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landscapes as might be expected if saturation impacted 
landscape-level estimates. Given the commonly cited 
impact of saturation in the relationship between spectral 
data and AGB [4] and the apparent saturation observed 
in LTS-based predictions for FIA plots in the Coos Bay 
study region (Fig. 3c), it was surprising to find that com-
parisons between lidar- and LTS-based AGB at aggregate 
scales did not indicate a major role of saturation in bias-
ing landscape-level estimates. One possible interpreta-
tion of these results is that, at aggregate-levels greater 
than 100 ha, lidar and LTS can similarly represent land-
scape gradients in the mean state of these forests from 
low to high AGB, even though predictions at the scale 
of individual pixels can differ substantially due to limita-
tions in the remote sensing, such as spectral saturation. 
Another possible explanation is that the act of aggregat-
ing data limits the importance of errors when predicting 
rare components of the landscape, such as high biomass 
forests. Stable relationships between the two sets of pre-
dictions (i.e., intercepts and slopes) are interesting in that 
they suggest a similar capacity to identify landscape-scale 
vegetation patterns. For example, landscape monitoring 
efforts aimed at assessing the distribution of high vs. low 
biomass forests might effectively utilize either lidar- or 
LTS-based products, even though actual biomass predic-
tions will tend to differ.

However, the stability in some performance metrics 
across aggregate-levels does not indicate that the lidar- 
and LTS-based predictions are equivalent. For example, 
the combination of positive intercepts and slopes < 1 
(Fig. 4) indicated that lidar-based maps predicted greater 
AGB than LTS-based maps within low biomass forests, 
but that this difference declines in magnitude or even 
changes direction (i.e., LTS-based AGB > lidar-based 
AGB) as the regression line crosses the 1:1 line at greater 
AGB values. Still, increases in Pearson correlation coeffi-
cients with aggregate area indicated that LTS-based AGB 
data could be linearly transformed to correct for most of 
the discrepancy. Linearly transforming, or calibrating, 
aggregate LTS-based predictions based on lidar predic-
tions would vary among disparate vegetation types, as 
evidenced by differences in slopes and intercepts between 
ecoregions.

In this research, we utilized existing lidar-based AGB 
maps that use only structural metrics from the lidar 
data, a common practice in many regions. As opposed 
to the regression methods used when developing our 
lidar-based AGB maps, the GNN framework implicitly 
incorporates environmental constraints on vegetation 
mapping, such as climatic controls on tree species distri-
butions, allowing the relationship between remote sens-
ing and AGB to vary as biophysical setting changes [15] 
whereas our lidar-based regression analysis did not. As a 

result, the variation in intercept with hardwood propor-
tion may represent a difference between regression and 
GNN modeling, rather than a fundamental difference 
between lidar and LTS-based approaches. This is con-
sistent with the observed improvements in lidar-based 
biomass mapping when accounting for biophysical set-
ting, such as species composition [33, 34]. Comparative 
frameworks such as the one utilized in this research offer 
an opportunity for comparing map products based on 
different remote sensing and different statistical meth-
ods to understand how and why map errors occur, which 
is a valuable area of future research. We also note that 
comparisons across a broader set of biophysical settings 
would allow for the development of a deeper under-
standing of the drivers of deviations between differing 
map products, potentially leading to improved modeling 
procedures.

Conclusions
Our multiscale comparison of lidar- and Landsat-based 
AGB predictions provided new insights into how these 
differing data sources can support forest biomass and 
carbon management across scales. Deviations between 
lidar- and Landsat-based maps indicated that these dif-
fering approaches represent similar gradients in forest 
biomass. However, ecoregion impacted these deviations, 
highlighting the importance of biophysical setting in 
determining map performance across aggregate scales. 
Gradients in species composition may need to be incor-
porated into lidar-based AGB mapping and any cali-
bration of LTS-based AGB that utilizes the lidar-based 
predictions. Given that map differences depended on 
vegetation pattern, such as the distribution of plant 
function types (e.g., hardwood vs. conifer trees) and for-
est cover, users should be wary of biomass and carbon 
mapping efforts that do not account for variation in bio-
physical setting. Finally, these results imply an exciting 
potential for fusion of lidar- and Landsat-based maps 
to produce calibrated AGB products that leverage the 
strengths of multiple remote sensing technologies into a 
single mapping framework.
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